• Что можно приготовить из кальмаров: быстро и вкусно

    Теория игр - это наука, изучающая принципы принятия решений в ситуациях, в которых несколько агентов взаимодействуют между собой. Решения, принимаемые кем-то одним, влияют на решения остальных и на исход взаимодействия в целом. Взаимодействия такого типа называются стратегическими.

    Слово «игра» не должно вводить в заблуждение. Это понятие в теории игр трактуется шире, чем в повседневной жизни. Ситуация стратегического взаимодействия может быть описана в виде модели, которую и называют игрой. Таким образом, в теории игр игрой будет считаться не только игра в шахматы, но и голосование в Совете Безопасности ООН, и торг продавца с покупателем на рынке.

    Стратегические взаимодействия встречаются практически в любой сфере нашей жизни. Пример из экономики: несколько компаний, конкурирующих на рынке, при принятии решений должны оглядываться на действия конкурентов. Если мы будем говорить о политике, то кандидаты, соперничающие на выборах, объявляя свою предвыборную платформу, естественно, принимают во внимание позиции других кандидатов по отношению к этому вопросу. А если мы изучаем взаимодействие людей в обществе, то с помощью теории игр можно узнать много интересного о склонности людей к кооперации.

    Представители социальных наук часто используют теорию игр в качестве инструмента, который позволяет решать интересующие их задачи. Упрощая, теоретико-игровое моделирование можно разбить на два этапа.

    Сначала по реальной жизненной ситуации нужно построить формальную модель. Как правило, в модели нужно отразить три основные характеристики жизненной ситуации: кто взаимодействует друг с другом (такие агенты в теории игр называются игроками), какие решения могут принимать игроки и какие платежи они в результате этого взаимодействия получают. Формальная модель и называется игрой.

    Как только мы построили игру, ее нужно каким-то образом решить. На этой стадии мы полностью абстрагируемся от реальности и изучаем исключительно формальную модель. Как устроено решение модели? Мы должны зафиксировать концепцию поведения игроков в игре, то есть принципы принимаемых ими решений. Как только мы зафиксировали эту концепцию, мы можем постараться с ее помощью решить игру, то есть предъявить исход, которым закончится игра.

    С помощью разных теоретико-игровых концепций можно решать разные классы игр. Один из самых красивых теоретических результатов теории игр доказывает, что в некотором очень широком классе моделей можно гарантированно найти решение. Я имею в виду результат Джона Нэша, полученный им в 1950 году: в любой конечной игре в нормальной форме можно всегда найти по крайней мере одно равновесие в смешанных стратегиях. Хронологически это была первая универсальная теоретико-игровая концепция, которая позволяет гарантированно найти решение в очень широком классе моделей.

    В отличие от представителей социальных наук, математиков-игровиков больше интересуют внутренние свойства игр и концепций их решения. Именно благодаря таким теоретическим результатам мы можем быть уверены в том, что, строя и решая ту или иную теоретико-игровую модель, мы в итоге получим решение с необходимыми свойствами.

    Конечно, Джон Нэш не является единоличным автором теории игр. Теория игр как самостоятельная наука начала развиваться чуть раньше, в начале ХХ века. Первые попытки формально определить игры, стратегии игроков и концепции решения игр восходят к именам Эмиля Бореля и Джона фон Неймана. Однако именно Нэш предъявил концепцию равновесия, которая позволяет гарантированно найти решение в конечных играх. В честь автора теоремы о существовании равновесия в смешанных стратегиях в конечных играх это равновесие стали называть равновесием Нэша.

    Врученная в 1994 году первая Нобелевская премия за результаты в области теории игр (Джону Нэшу, Райнхарду Зелтену и Джону Харсаньи) фактически утвердила статус теории игр как самостоятельного научного направления со своими задачами и методами их решений. Последовавшие за этим еще несколько Нобелевских премий вручались как за фундаментальные теоретико-игровые результаты, так и за приложения теории игр к той или иной стороне нашей жизни. В ведущих университетах мира на программах и по экономике, и по политическим наукам теория игр обязательно входит в стандартный набор курсов. Часто ее изучают и психологи, и математики.

    Сегодня, если посмотреть на секции крупных конференций и на статьи в ведущих научных журналах по теории игр, количество работ, использующих аппарат теории игр для решения прикладных задач, гораздо больше, чем количество фундаментальных теоретико-игровых результатов. Текущее состояние дисциплины можно описать так: в теории игр сформировалось достаточно мощное ядро, пласт знаний, который позволяет получать хорошие и интересные результаты исследователям из смежных областей.

    Тем не менее всегда открываются новые интересные направления исследований и в самой теории игр. Так, благодаря развитию вычислительных технологий появились новые теоретико-игровые концепции, учитывающие возможности и ограничения вычислительных машин. Благодаря им появилась возможность решать новые задачи. Результат 2015 года о равновесии в одной из версий покера, полученный Боулингом, Берчем, Йохансоном и Таммелином, - замечательный пример использования современных теорий и технологий.

    Теория игр - совокупность математических методов решения конфликтных ситуаций (столкновений интересов). В теории игр игрой называется математическая модель конфликтной ситуации. Предмет особого интереса теории игр - исследование стратегий принятия решений участников игры в условиях неопределённости. Неопределённость связана с тем, что две или более стороны преследуют противоположные цели, а результаты любого действия каждой из сторон зависят от ходов партнёра. При этом каждая из сторон стремится принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени.

    Наиболее последовательно теория игр применяется в экономике, где конфликтные ситуации возникают, например, в отношениях между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Применение теории игр можно найти и в политике, социологии, биологии, военном искусстве.

    Из истории теории игр

    История теории игр как самостоятельной дисциплины начинается в 1944 году, когда Джон фон Нейман и Оскар Моргенштерн опубликовали книгу "Теория игр и экономическое поведение" ("Theory of Games and Economic Behavior"). Хотя примеры теории игр встречались и раньше: трактат Вавилонского Талмуда о разделе имущества умершего мужа между его жёнами, карточные игры в 18-м веке, развитие теории шахматной игры в начале 20-го века, доказательство теоремы о минимаксе того же Джона фон Неймана в 1928 году, без которой не было бы никакой теории игр.

    В 50-х годах 20-го века Мелвин Дрешер и Мерил Флод из Rand Corporation первыми экспериментально применили дилемму заключённого, Джон Нэш в работах о состоянии равновесия в играх двух лиц развил понятие равновесия Нэша.

    Рейнхард Сэлтен в 1965 году опубликовал книгу "Обработка олигополии в теории игр по требованию" ("Spieltheoretische Behandlung eines Oligomodells mit Nachfrageträgheit"), с которой применение теории игр в экономике получило новую движущую силу. Шагом вперёд в эволюции теории игр связан с работой Джона Мейнарда Смита "Эволюционно стабильная стратегия" ("Evolutionary Stable Strategy", 1974). Дилемма заключённого была популяризована в книге Роберта Аксельрода "Эволюция кооперации" ("The Evolution of Cooperation"), опубликованной в 1984 году. В 1994 году именно за вклад в теорию игр Нобелевской премии были удостоены Джон Нэш, Джон Харсаньи и Рейнхард Сэлтен.

    Теория игр в жизни и бизнесе

    Остановимся подробнее на сути кофликтной ситуации (столкновении интересов) в том смысле, как он понимается в теории игр для дальнейшего моделирования различных ситуаций в жизни и бизнесе. Пусть индивидуум находится в таком положении, которое приводит к одному из нескольких возможных исходов, причём у индивидуума имеются по отношению к этим исходам некоторые личные предпочтения. Но хотя он может до некоторой степени управлять переменными факторами, определяющими исход, он не имеет полной власти над ними. Иногда управление находится в руках нескольких индивидуумов, которые, подобно ему, имеют какие-то предпочтения по отношению к возможным исходам, но в общем случае интересы этих индивидуумов не согласуются. В других случаях конечный исход может зависеть как от случайностей (которые в юридических науках иногда именуются стихийными бедствиями), так и от других индивидуумов. Теория игр систематизирует наблюдения за такими ситуациями и формулировки общих принципов для руководства разумными действиями в таких ситуациях.

    В некоторых отношениях название "теория игр" неудачно, так как наводит на мысль, что теория игр рассматривает лишь не имеющие социального значения столкновения, происходящие в салонных играх, но всё же эта теория имеет значительно более широкое значение.

    О применении теории игр может дать представление следующая экономическая ситуация. Пусть имеется несколько предпринимателей, каждый из которых стремится получить максимум прибыли, имея при этом лишь ограниченную власть над переменными, определяющими эту прибыль. Предприниматель не имеет власти над переменными, которыми распоряжается другой предприниматель, но которые могут сильно влиять на доход первого. Трактовка этой ситуации как игры может вызвать следующее возражение. В игровой модели предполагается, что каждый предприниматель делает один выбор из области возможных выборов и этими единичными выборами определяются прибыли. Очевидно, что этого почти не может быть в действительности, так как при этом в промышленности не были бы нужны сложные управленческие аппараты. Просто есть ряд решений и модификаций этих решений, которые зависят от выборов, совершённых другими участниками экономической системы (игроками). Но в принципе можно вообразить, что какой-либо администратор предвидит все возможные случайности и подробно описывает действие, которое нужно предпринимать в каждом случае, вместо того чтобы решать каждую задачу по мере её возникновения.

    Военный кофликт, по определению, есть столкновение интересов, в котором ни одна из сторон не распоряжается полностью переменными, определяющими исход, который решается рядом битв. Можно просто считать исход выигрышем или проигрышем и приписать им численные значения 1 и 0.

    Одна из самых простых конфликтных ситуаций, которая может быть записана и решена в теории игр - дуэль, представляющая собой конфликт двух игроков 1 и 2, имеющих соответственно p и q выстрелов. Для каждого игрока существует функция, указывающая вероятность того, что выстрел игрока i в момент времени t даст попадание, которое окажется смертельным.

    В итоге теория игр приходит к такой формулировке некоторого класса столкновений интересов: имеются n игроков, и каждому нужно выбрать одну возможность из стого определённого набора, причём при совершении выбора у игрока нет никаких сведений о выборах других игроков. Область возможных выборов игрока может содержать такие элементы, как "ход тузом пик", "производство танков вместо автомобилей", или в общем смысле, стратегию, определяющую все действия, которые нужно совершить во всех возможных обстоятельствах. Перед каждым игроком стоит задача: какой выбор он должен сделать, чтобы его частное влияние на исход принесло ему как можно больший выигрыш?

    Математическая модель в теории игр и формализация задач

    Как мы уже отмечали, игра является математической моделью конфликтной ситуации и требует наличия следующих компонент:

    1. заинтересованных сторон;
    2. возможных действий с каждой стороны;
    3. интересов сторон.

    Заинтересованные в игре стороны называются игроками , каждый из них может предпринять не менее двух действий (если в распоряжении игрока только одно действие, то он фактически не участвует в игре, так как заранее известно, что он предпримет). Исход игры называется выигрышем .

    Реальная конфликтная ситуация не всегда, а игра (в понятии теории игр) - всегда - протекает по определённым правилам , которые точно определяют:

    1. варианты действий игроков;
    2. объём информации каждого игрока о поведении партнёра;
    3. выигрыш, к которому приводит каждая совокупность действий.

    Примерами формализованных игр могут служить футбол, карточная игра, шахматы.

    Но в экономике модель поведения игроков возникает, например, когда несколько фирм стремятся занять более выгодное место на рынке, несколько лиц пытаются поделить между собой какое-либо благо (ресурсы, финансы) так, чтобы каждому досталось по возможности больше. Игроками в конфликтных ситуациях в экономике, которые можно моделировать в виде игры, являются фирмы, банки, отдельные люди и другие экономические агенты. В свою очередь в условиях войны модель игры используется, например, в выборе более лучшего оружия (из имеющегося или потенциально возможного) для разгрома противника или защиты от нападения.

    Для игры характерна неопределённость результата . Причины неопределённости можно распределить по следующим группам:

    1. комбинаторные (как в шахматах);
    2. влияние случайных факторов (как в игре "орёл или решка", кости, карточные игры);
    3. стратегические (игрок не знает, какое действие предпримет противник).

    Стратегией игрока называется совокупность правил, определяющих его действия при каждом ходе в зависимости от сложившейся ситуации.

    Целью теории игр является определение оптимальной стратегии для каждого игрока. Определить такую стратегию - значит решить игру. Оптимальность стратегии достигается, когда один из игроков должен получить максимальный выигрыш, при том, что второй придерживается своей стратегии. А второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.

    Классификация игр

    1. Классификация по числу игроков (игра двух и более лиц). Игры двух лиц занимают центральное место во всей теории игр. Основным понятием теории игр для игры двух лиц является обобщение весьма существенной идеи равновесия, которая естественно появляется в играх двух лиц. Что же касается игр n лиц, то одна часть теории игр посвящена играм, в которых сотрудничество между игроками запрещено. В другой части теории игр n лиц предполагается, что игроки могут сотрудничать для взаимной пользы (см. далее в этом параграфе о некооперативных и кооперативных играх).
    2. Классификация по числу игроков и их стратегиям (число стратегий не менее двух, может быть бесконечностью).
    3. Классификация по количеству информации относительно прошлых ходов: игры с полной информацией и неполной информацией. Пусть есть игрок 1 - покупатель и игрок 2 - продавец. Если у игрока 1 нет полной информации о действиях игрока 2, то игрок 1 может и не различить две альтернативы, между которыми ему предстоит сделать выбор. Например, выбирая между двумя видами некоторого товара и не зная о том, что по некоторым признакам товар A хуже товара B , игрок 1 может не видеть различия между альтернативами.
    4. Классификация по принципам деления выигрыша : кооперативные, коалиционные с одной стороны и некооперативные, бескоалиционные с другой стороны. В некооперативной игре , или иначе - бескоалиционной игре , игроки выбирают стратегии одновременно, не зная, какую стратегию выберет второй игрок. Коммуникация между игроками невозможна. В кооперативной игре , или иначе - коалиционной игре , игроки могут объединяться в коалиции и предпринимать коллективные действия, чтобы увеличить свои выигрыши.
    5. Конечная игра двух лиц с нулевой суммой или антогонистическая игра – это стратегическая игра с полной информацией, в которой участвуют стороны с противоположными интересами. Анатагонистическими играми являются матричные игры .

    Классический пример из теории игр - дилемма заключённого

    Двух подозреваемых берут под стражу и изолируют друг от друга. Окружной прокурор убеждён, что они совершили тяжкое преступление, но не имеет достаточных доказательств, чтобы предъявить им обвинение на суде. Он говорит каждому из заключённых, что у него имеется две альтернативы: признаться в преступлении, которое по убеждению полиции он совершил, или не признаваться. Если оба не признаются, то окружной прокурор предъявит им обвинение в каком-либо незначительном преступлении, например, мелкая кража или незаконное владение оружием, и они оба получат небольшое наказание. Если они оба признаются, то будут подлежать судебной ответственности, но он не потребует самого строгого приговора. Если же один признается, а другой нет, то признавшемуся приговор будет смягчён за выдачу сообщника, в то время как упорствующий получит "на полную катушку".

    Если эту стратегическую задачу сформулировать в сроках заключения, то она сводится к следующему:

    Таким образом, если оба заключённых не признаются, они получат по 1 году каждый. Если оба признаются, то каждый получит по 8 лет. А если один признается, другой не признается, то тот, который признался отделается тремя месяцами заключения, а тот, который не признается, получит 10 лет. Приведённая выше матрица правильно отражает дилемму заключённого: перед каждым стоит вопрос - признаться или не признаться. Игра, которую окружной прокурор предлагает заключённым, представляет собой некооперативную игру или иначе - бескоалиционную игру . Если бы оба заключённых имели возможность сотрудничать (то есть игра была бы кооперативной или иначе коалиционной игрой ), то оба не признались бы и получили по году тюрьмы каждый.

    Примеры использования математических средств теории игр

    Переходим теперь к рассмотрению решений примеров распространённых классов игр, для которых в теории игр существуют методы исследования и решения.

    Пример формализации некооперативной (бескоалиционной) игры двух лиц

    В предыдущем параграфе мы уже рассмотрели пример некооперативной (бескоалиционной) игры (дилемма заключённого). Давайте закрепим наши навыки. Для этого подойдёт также классический сюжет, навеянный "Приключениями Шерлока Холмса" Артура Конан Дойля. Можно, конечно, возразить: пример не из жизни, а из литературы, но ведь Конан Дойль не зарекомендовал себя как писатель-фантаст! Классический ещё и потому, что задание выполнено Оскаром Моргенштерном, как мы уже установили - одним из основателей теории игр.

    Пример 1. Будет приведено сокращённое изложение фрагмента одного из "Приключений Шерлока Холмса". Согласно известным понятиям теории игр составить модель конфликтной ситуации и формально записать игру.

    Шерлок Холмс намерен отправиться из Лондона в Дувр с дальнейшей целю попасть на континент (европейский), чтобы спастись от профессора Мориарти, который преследует его. Сев в поезд, он увидел на вокзальной платформе профессора Мориарти. Шерлок Холмс допускает, что Мориарти может выбрать особый поезд и обогнать его. У Шерлока Холмса две альтернативы: продолжать поездку до Дувра или сойти на станции Кентерберри, являющейся единственной промежуточной станцией на его маршруте. Мы принимаем, что его противник достаточно разумен, чтобы определить возможности Холмса, поэтому перед ним те же две альтернативы. Оба противника должны выбрать станцию, чтобы сойти на ней с поезда, не зная, какое решение примет каждый из них. Если в результате принятия решения оба окажутся на одной и той же станции, то можно однозначно считать, что Шерлок Холмс будет убит профессором Мориарти. Если же Шерлок Холмс благополучно доберётся до Дувра, то он будет спасён.

    Решение. Героев Конан Дойля можем рассматривать как участников игры, то есть игроков. В распоряжении каждого игрока i (i =1,2) две чистые стратегии:

    • сойти в Дувре (стратегия s i1 (i =1,2) );
    • сойти на промежуточной станции (стратегия s i2 (i =1,2) )

    В зависимости от того, какую из двух стратегий выберет каждый из двух игроков, будет создана особая комбинация стратегий как пара s = (s 1 , s 2 ) .

    Каждой комбинации можно поставить в соответствие событие - исход попытки убийства Шерлока Холмса профессором Мориарти. Составляем матрицу данной игры с возможными событиями.

    Под каждым из событий указан индекс, означающий приобретение профессора Мориарти, и рассчитываемый в зависимости от спасения Холмса. Оба героя выбирают стратегию одновременно, не зная, что выберет противник. Таким образом, игра является некооперативной, поскольку, во-первых, игроки находятся в разных поездах, а во-вторых, имеют противоположные интересы.

    Пример формализации и решения кооперативной (коалиционной) игры n лиц

    В этом пункте практическая часть, то есть ход решения примера задачи, будет предварена теоретической частью, в которой будем знакомиться с понятиями теории игр для решения кооперативных (бескоалиционных) игр. Для этой задачи теория игр предлагает:

    • характеристическую функцию (если говорить упрощённо, она отражает величину выгоды объединения игроков в коалицию);
    • понятие аддитивности (свойства величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям, в некотором классе разбиений объекта на части) и супераддитивности (значение величины, соответствующее целому объекту, больше суммы значений величин, соответствующих его частям) характеристической функции.

    Супераддитивность характеристической функции говорит о том, что объединение в коалиции выгодна игрокам, так как в этом случае величина выигрыша коалиции увеличивается с увеличением числа игроков.

    Для формализации игры нам нужно ввести формальные обозначения вышеназванных понятий.

    Для игры n обозначим множество всех её игроков как N = {1,2,...,n} Любое непустое подмножество множества N обозначим как Т (включая само N и все подмножества, состоящие из одного элемента). На сайте есть занятие "Множества и операции над множествами ", которое при переходе по ссылке открывается в новом окне.

    Характеристическая функция обозначается как v и область её определения состоит из возможных подмножеств множества N . v (T ) - значение характеристической функции для того или иного подмножества, например, доход, полученный коалицией, в том числе, возможно, состоящей из одного игрока. Это важно по той причине, что теория игр требует проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

    Для двух непустых коалиций из подмножеств T 1 и T 2 аддитивность характеристической функции кооперативной (коалиционной) игры записывается так:

    А супераддитивность так:

    Пример 2. Трое студентов музыкальной школы подрабатывают в разных клубах, свою выручку они получают от посетителей клубов. Установить, выгодно ли им объединять свои силы (если да, то с какими условиями), используя понятия теории игр для решения кооперативных игр n лиц, при следующих исходных данных.

    В среднем их выручка за один вечер составляла:

    • у скрипача 600 единиц;
    • у гитариста 700 единиц;
    • у певицы 900 единиц.

    Пытаясь увеличить выручку, студенты в течение нескольких месяцев создавали различные группы. Результаты показали, что, объединившись, они могут увеличить свою выручку за вечер следующим образом:

    • скрипач + гитарист зарабатывали 1500 единиц;
    • скрипач + певица зарабатывали 1800 единиц;
    • гитарист + певица зарабатывали 1900 единиц;
    • скрипач + гитарист + певица зарабатывали 3000 единиц.

    Решение. В этом примере число участников игры n = 3 , следовательно, область определения характеристической функции игры состоит из 2³ = 8 возможных подмножеств множества всех игроков. Перечислим все возможные коалиции T :

    • коалиции из одного элемента, каждая из которых состоит из одного игрока - музыканта: T {1} , T {2} , T {3} ;
    • коалиции из двух элементов: T {1,2} , T {1,3} , T {2,3} ;
    • коалиция из трёх элементов: T {1,2,3} .

    Каждому из игроков присвоим порядковый номер:

    • скрипач - 1-й игрок;
    • гитарист - 2-й игрок;
    • певица - 3-й игрок.

    По данным задачи определим характеристическую функцию игры v :

    v(T{1}) = 600 ; v(T{2}) = 700 ; v(T{3}) = 900 ; эти значения характеристической функции определены исходя из выигрышей соответственно первого, второго и третьего игроков, когда они не объединяются в коалиции;

    v(T{1,2}) = 1500 ; v(T{1,3}) = 1800 ; v(T{2,3}) = 1900 ; эти значения характеристической функции определены по выручке каждой пары игроков, объединившихся в коалиции;

    v(T{1,2,3}) = 3000 ; это значение характеристической функции определено по средней выручке в случае, когда игроки объединялись в тройки.

    Таким образом, мы перечислили все возможные коалиции игроков, их получилось восемь, как и должно быть, так как область определения характеристической функции игры состоит именно из восьми возможных подмножеств множества всех игроков. Что и требует теория игр, так как нам нужно проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

    Как выполняются условия супераддитивности в этом примере? Определим, как игроки образуют непересекающиеся коалиции T 1 и T 2 . Если часть игроков входят в коалицию T 1 , то все остальные игроки входят в коалицию T 2 и по определению эта коалиция образуется как разность всего множества игроков и множества T 1 . Тогда, если T 1 - коалиция из одного игрока, то в коалиции T 2 будут второй и третий игроки, если в коалиции T 1 будут первый и третий игроки, то коалиция T 2 будет состоять только из второго игрока, и так далее.

    Забавный пример применения теории игр есть в фэнтезийной книжке Энтони Пирса «Бравый голем»

    Много текста

    – Смысл того, что я сейчас вам всем продемонстрирую, – начал Гранди, – заключается в наборе необходимого количества баллов. Баллы могут быть самыми различными – все зависит от комбинации решений, которые принимаются участниками игры. К примеру, предположим, что каждый участник свидетельствует против своего товарища по игре. В этом случае каждому участнику можно присудить по одному очку!
    – Одно очко! – сказала Морская Ведьма, проявляя к игре неожиданный интерес. Очевидно, колдунья хотела удостовериться в том, что у голема нет никаких шансов, чтобы демон Ксант остался им доволен.
    – А теперь давайте предположим, что каждый из участников игры не свидетельствует против своего товарища! – продолжал Гранди. – В этом случае каждому можно присудить по три балла. Я хочу особенно отметить, что покуда все участники действуют одинаково, то им присуждается одинаковое количество баллов. Ни у кого нет никаких преимуществ перед другим.
    – Три очка! – сказала вторая ведьма.
    – Но вот теперь мы вправе предложить, что один из игроков начал давать показания против второго, а второй все равно молчит! – сказал Гранди. – В таком случае тот, кто эти показания дает, получает сразу пять очков, а тот, который молчит, не получает ни одного очка!
    – Ага! – в один голос воскликнули обе ведьмы, хищно облизывая губы. Было видно, что обе они явно собирались получить по пять очков.
    – Я все время терял очки! – воскликнул демон. – Но ведь ты пока только обрисовал ситуацию, а способа ее разрешения еще не представил! Так в чем заключается твоя стратегия? Не надо тянуть время!
    – Погоди, сейчас я все объясню! – воскликнул Гранди. – Каждый из нас четверых – нас тут двое големов и две ведьмы – будет сражаться против своих противников. Конечно же, ведьмы постараются никому ни в чем не уступить…
    – Конечно! – воскликнули снова обе ведьмы в унисон. Они отлично понимали голема с полуслова!
    – А второй голем будет следовать моей тактике, – продолжал Гранди невозмутимо. Он посмотрел на своего двойника. – Ты, конечно, в курсе?
    – Да, конечно! Я ведь твоя копия! Я прекрасно все понимаю, что ты думаешь!
    – Вот и отлично! В таком случае, давайте-ка сделаем первый ход, чтобы демон смог сам все увидеть. В каждом поединке будет несколько раундов, чтобы вся стратегия смогла проявиться до конца и произвела впечатление целостной системы. Пожалуй, мне следует начать.

    – Теперь каждый из нас должен наносить отметки на своих листках бумаги! – обратился голем к ведьме. – Сначала следует нарисовать улыбающееся лицо. Это будет означать, что мы не будем давать показания на товарища по заключению. Можно также нарисовать насупленное лицо, которое означает, что мы думаем только о себе и нужные показания на своего товарища даем. Мы оба сознаем, что лучше было бы, если бы никто не оказался тем самым насупленным лицом, но ведь, с другой стороны, насупленное лицо получает определенные преимущества перед улыбающимся! Но суть заключается в том, что каждый из нас не знает, что выберет другой! Не будем знать до тех пор, покуда партнер по игре не откроет своего рисунка!
    – Начинай ты, сволочь! – выругалась ведьма. Она, как всегда, не могла обойтись без бранных эпитетов!
    – Готово! – воскликнул Гранди, нарисовав большое улыбающееся лицо на своем листочке бумаги таким образом, чтобы ведьма не смогла увидеть, что он изобразил там. Ведьма сделала свой ход, тоже изобразив лицо. Надо думать, она непременно изобразила недобрую физиономию!
    – Ну, а теперь нам остается только показать друг другу наши рисунки, – объявил Гранди. Обернувшись назад, он открыл рисунок публике и показал его во все стороны, чтобы рисунок смогли увидеть все. Что-то недовольно ворча, то же самое сделала и Морская Ведьма.
    Как Гранди и рассчитывал, с рисунка колдуньи смотрело злое, недовольное лицо.
    – Теперь вы, уважаемые зрители, – сказал Гранди торжественно, – видите, что ведьма предпочла давать на меня показания. Я не собираюсь этого делать. Таким образом, Морская Ведьма набирает пять очков. А я, соответственно, не получаю ни одного балла. И тут…
    По рядам зрителей снова прокатился легкий шумок. Все явно сочувствовали голему и страстно желали, чтобы Морская Ведьма проиграла.
    Но ведь игра только-только началась! Если только его стратегия была верной…
    – Теперь мы можем перейти ко второму раунду! – объявил Гранди торжественно. – Мы снова должны повторить ходы. Каждый рисует лицо, которое ему ближе!
    Так и сделали. Гранди изображал теперь хмурое, недовольное лицо.
    Как только игроки показали свои рисунки, публика увидела, что теперь оба они изобразили злые лица.
    – По два очка каждому! – сказал Гранди.
    – Семь два в мою пользу! – заорала ведьма радостно. – Ты никуда отсюда не выберешься, мерзавец!
    – Начинаем снова! – воскликнул Гранди. Они сделали по очередному рисунку и показали их публике. Снова те же самые злые лица.
    – Каждый из нас повторил предыдущий ход, повел себя эгоистично, а потому, как мне кажется, лучше никому не присуждать очков! – заявил голем.
    – Но я все равно веду в игре! – сказала ведьма, радостно потирая руки.
    – Ладно, не шуми! – сказал Гранди. – Игра ведь не закончилась. Посмотрим, что будет! Итак, уважаемая публика, мы начинаем четвертый по счету раунд!
    Игроки снова сделали рисунки, показав публике то, что они изобразили на своих листках. Оба листка снова явили зрителям те же злые физиономии.
    – Восемь – три! – закричала ведьма, заливаясь злобным смехом. – Своей дурацкой стратегией ты выкопал себе могилу, голем!
    – Пятый раунд! – закричал Гранди. Повторилось то же самое, что и в прежние раунды, – снова злые лица, только счет изменился – он стал девять – четыре в пользу колдуньи.
    – Теперь последний, шестой раунд! – возвестил Гранди. Его предварительные расчеты показывали, что именно этот раунд должен стать судьбоносным. Теперь теория должна была подтвердиться либо быть опровергнута практикой.
    Несколько быстрых и нервных движений карандаша по бумаге – и оба рисунка предстали перед глазами публики. Снова два лица, теперь даже с оскаленными зубами!
    – Десять – пять в мою пользу! Моя игра! Я победила! – загоготала Морская Ведьма.

    – Ты действительно выиграла, – согласился Гранди мрачно. Аудитория зловеще молчала.
    Демон шевельнул было губами, чтобы что-то сказать.

    – Но наше состязание еще не закончено! – крикнул звонко Гранди. – Это ведь была только первая часть игры.
    – Да вам целую вечность подавай! – заворчал демон Ксант недовольно.
    – Это верно! – сказал Гранди спокойно. – Но ведь один тур ничего не решает, только методичность указывает на лучший результат.
    Теперь голем подошел к другой ведьме.
    – Я хотел бы сыграть этот тур с другим противником! – объявил он. – Каждый из нас будет изображать лица, как это было в предыдущий раз, потом будет демонстрировать нарисованное публике!
    Так они и сделали. Результат был таким же, как и в прошлый раз – Гранди нарисовал улыбающуюся рожицу, а ведьма – так вообще череп. Она сразу набрала преимущество в целых пять баллов, оставив Гранди позади.
    Оставшиеся пять раундов окончились с теми результатами, которых и можно было ожидать. Снова счет стал десять – пять в пользу Морской Ведьмы.
    – Голем, мне очень нравится твоя стратегия! – хохотала колдунья.
    – Итак, вы просмотрели два тура игры, уважаемые зрители! – воскликнул Гранди. – Я, таким образом, набрал десять очков, а мои соперницы – двадцать!
    Публика, которая тоже вела подсчет очков, скорбно закивала головами. Их подсчет совпал с подсчетами голема. Только облако по имени Фракто казалось весьма довольным, хотя, конечно, ведьме оно тоже не симпатизировало.
    Но Рапунцелия одобряюще улыбнулась голему – она продолжала верить в него. Она, возможно, осталась единственной, кто верил ему теперь. Гранди надеялся, что он оправдает это безграничное доверие.
    Теперь Гранди подошел к своему третьему сопернику – своему двойнику. Он должен был стать его последним противником. Быстро чиркнув карандашами по бумаге, големы показали листочки публике. Все увидели две смеющихся рожицы.
    – Заметьте, дорогие зрители, каждый из нас предпочел быть добрым сокамерником! – воскликнул Гранди. – А посему никто из нас не получил в этой игре необходимого преимущества перед соперником. Таким образом, мы оба получаем по три балла и приступаем к следующему раунду!
    Второй раунд начался. Результат был тот же, что и в предыдущий раз. Затем оставшиеся раунды. И в каждый раунд оба противника набирали опять по три балла! Это было просто невероятно, но публика была готова подтвердить все происходящее.

    Наконец и этот тур подошел к концу, и Гранди, быстро водя своим карандашиком по бумаге, стал подсчитывать результат. Наконец он объявил торжественно:
    – Восемнадцать на восемнадцать! В общей сложности я набрал двадцать восемь очков, а мои соперники набрали тридцать восемь!
    – Значит, ты проиграл, – возвестила Морская Ведьма радостно. – Победителем станет, таким образом, кто-то из нас!
    – Возможно! – спокойно отозвался Гранди. Теперь наступал еще один важный момент. Если все пройдет так, как им и было задумано…
    – Нужно довести дело до конца! – воскликнул второй голем. – Мне ведь тоже еще нужно сразиться с двумя Морскими Ведьмами! Игра еще не закончена!
    – Да, конечно, давай! – сказал Гранди. – Но только руководствуйся стратегией!
    – Да, конечно! – заверил его двойник.
    Этот голем подошел к одной из ведьм, и тур начался. Завершился он с тем же результатом, с которым из подобного раунда вышел сам Гранди – счет был десять-пять в пользу колдуньи. Ведьма прямо-таки сияла от невыразимой радости, а публика угрюмо замолчала. Демон Ксант выглядел несколько уставшим, что было не слишком добрым предзнаменованием.
    Теперь пришло время заключительного раунда – одна ведьма должна была сражаться против второй. Каждая имела в активе по двадцать очков, которые она смогла получить, сражаясь с големами.
    – А теперь, если ты позволишь набрать мне хотя бы несколько лишних очков… – заговорщицки прошептала Морская Ведьма своему двойнику.
    Гранди старался сохранить спокойствие хотя бы внешне, хотя в душе его бушевал ураган противоречивых чувств. Его удача сейчас зависела от того, насколько верно он предугадал возможное поведение обеих ведьм – ведь характер их был, в сущности, одним и тем же!
    Сейчас наступал самый, пожалуй, критический момент. Но если он ошибся!
    – С какой это стати я должна тебе уступать! – прокаркала вторая ведьма первой. – Я сама хочу набрать больше очков и выбраться отсюда!
    – Ну, если ты так нахально ведешь себя, – завопила претендентка, – то я тебя сейчас отделаю так, что ты больше не будешь похожа на меня!
    Ведьмы, одарив друг друга ненавидящими взглядами, начертили свои рисунки и показали их публике. Конечно же, ничего другого, кроме двух черепов, там оказаться просто не могло! Каждая набрала по одному очку.
    Ведьмы, осыпая друг друга проклятьями, приступили ко второму раунду. Результат опять тот же самый – снова два коряво нарисованных черепа. Ведьмы, таким образом, набрали еще по одному очку. Публика старательно все фиксировала.
    Так продолжалось и в дальнейшем. Когда тур закончился, усталые ведьмы обнаружили, что каждая из них набрала по шесть очков. Снова ничья!
    – Теперь давайте подсчитаем получившиеся результаты и все сравним! – торжествующе сказал Гранди. – Каждая из ведьм набрала по двадцать шесть очков, а големы набрали по двадцать восемь баллов. Итак, что мы имеем? А имеем мы тот результат, что големы имеют большее количество очков!
    По рядам зрителей прокатился вздох удивления. Взволнованные зрители стали писать на своих листочках столбики цифр, проверяя правильность подсчета. Многие за это время просто не считали количество набранных баллов, считая, что результат игры им уже известен. Обе ведьмы стали рычать от негодования, непонятно, кого именно обвиняя в происшедшем. Глаза демона Ксанта вновь загорелись настороженным огнем. Его доверие оправдалось!
    – Я прошу вас, уважаемая публика, обратить внимание на тот факт, – поднял руку Гранди, требуя от зрителей успокоиться, – что ни один из големов не выиграл ни единого раунда. Но окончательная победа все-таки будет за одним из нас, из големов. Результаты будут более красноречивыми, если состязание продолжится и дальше! Я хочу сказать, дорогие мои зрители, что в вечном поединке моя стратегия будет неизменно оказываться выигрышной!
    Демон Ксант с интересом прислушивался к тому, что говорил Гранди. Наконец он, испуская клубы пара, открыл рот:
    – А в чем конкретно заключается твоя стратегия?
    – Я называю ее «Быть твердым, но честным»! – пояснил Гранди. – Я начинаю игру честно, но затем начинаю проигрывать, потому что мне попадаются очень специфические партнеры. Поэтому в первом раунде, когда оказывается, что Морская Ведьма начинает давать против меня показания, я автоматически остаюсь проигравшим и во втором раунде – и так продолжается до конца. Результат может быть другим, ежели ведьма переменит свою тактику ведения игры. Но поскольку ей такое даже в голову прийти не может, мы продолжали играть по предыдущему шаблону. Когда я начал играть со своим двойником, то он хорошо отнесся ко мне, а я хорошо относился к нему в следующем раунде игры. Поэтому игра у нас пошла тоже по-другому и несколько однообразно, поскольку мы не хотели изменять тактику…
    – Но ведь вы не выиграли ни единого тура! – удивленно возразил демон.
    – Да, а эти ведьмы не проиграли ни одного тура! – подтвердил Гранди. – Но ведь победа не автоматически достается тому, за кем остались туры. Победа достается тому, кто набрал большее количество баллов, а это совсем другое дело! Мне удалось набрать больше очков, когда мы играли вместе с моим двойником, чем когда я играл с ведьмами. Их эгоистическое отношение принесло им сиюминутную победу, но в плане более долгосрочном оказалось, что именно из-за этого обе они проиграли игру целиком. Часто случается и такое!

    В каждой ситуации мы придерживаемся определённой стратегии. Обычно это происходит бессознательно, отсюда и частые ошибки. Избежать их можно, если научиться угадывать действия другого человека.

    Взять, к примеру, свидания. Мы все выбираем одну главную стратегию: пытаемся скрыть отрицательные черты характера и показать положительные.

    Пока не буду рассказывать, что каждый вечер люблю полежать с пивком на диване. Расскажу, когда она узнает меня поближе и поймёт, что в остальном я в порядке.

    Павел, диванный эксперт

    Такая стратегия - это, скорее, не ложь, а умалчивание.

    Пример

    Представьте ситуацию: мужчина и женщина встречаются несколько месяцев и однажды . У мужчины квартира небольшая, поэтому логично, что речь идёт о переезде в квартиру женщины.

    Надо сказать, что мужчина работает экономистом. Он проанализировал ситуацию и понял, что отказываться от аренды квартиры пока невыгодно. Сейчас он платит небольшие деньги и в случае разрыва отношений не найдёт такой же хороший вариант. Женщина, узнав об этом, немедленно бросает кавалера.

    В чём ошиблась эта пара? Мужчина, верно просчитав ситуацию с экономической точки зрения, не учёл психологического фактора. Жест с квартирой женщина восприняла как несерьёзность намерений. Но она не подумала о том, что её ухажёр - экономист, стало быть, принимает решения в первую очередь с позиции «выгодно - невыгодно». Таким образом, эта игра была проиграна обоими участниками.

    Что делать

    Просчитывайте не только свои действия, но и реакцию других людей. Почаще спрашивайте себя: а как можно интерпретировать мой поступок? Совет специально для мужчин: объясняйте свои действия и помните, что любая недоговорённость - повод для вашей второй половины пофантазировать. Стратегическое мышление - это не только математика, но и психология!

    2. Игра на 90 баллов

    Загадки, квесты, и логику перестанут быть проблемой после изучения теории игр. Вы научитесь искать все существующие варианты ответов и выбирать среди них наиболее подходящий.

    Пример

    Два студента попросили профессора отсрочить экзамен. Они рассказали душещипательную историю о том, как поехали на выходные в другой город, но на обратной дороге у них спустило шину. Помощь пришлось искать всю ночь, поэтому они не выспались и плохо себя чувствуют. (На самом деле друзья отмечали окончание сессии, а этот экзамен был заключительным и не самым тяжёлым.)

    Профессор согласился. На следующий день он рассадил студентов в разные аудитории и раздал по листку, где было лишь два вопроса. Первый стоил всего 10 баллов, а второй - 90 и звучал так: «Какое колесо спустило?»

    Если опираться на логику, то ответ будет «Правое переднее колесо»: именно справа, ближе к обочине чаще всего валяется всякий мусор, на который в первую очередь наезжает передняя шина. Но не спешите.

    В этой ситуации важно дать не столько правильный (логичный) ответ, сколько ответ, который будет написан на бумажке друга.

    Поэтому очевидно, что оба студента будут строить догадки исходя из предположения, как думает другой.

    Можно рассуждать так: есть ли у студентов что-то «общее» с одним из колёс? Возможно, год назад им вместе приходилось уже менять какое-то колесо. Или одна шина измазана краской, и оба студента знают об этом. Если такой момент будет найден, именно этот вариант и стоит выбрать. Даже если другой студент не знаком с теорией игр, он может вспомнить этот случай и указать нужное колесо.

    Что делать

    В рассуждениях опирайтесь не только на логику, но и на жизненные обстоятельства. Помните: не всё то, что логично для вас, так же логично и для другого. Чаще привлекайте друзей и родственников к играм на мышление. Это позволит понять, как думают близкие вам люди, и в дальнейшем избежать сложных ситуаций, как в примере выше.

    3. Игра с собой

    Знания о стратегических играх помогают глубже анализировать собственные решения.

    Пример

    Некая Ольга решает, пробовать ей курить или нет.

    Дерево игры

    На рисунке представлено так называемое дерево игры: его полезно рисовать каждый раз, когда вам нужно принять какое-либо решение. Ветви этого дерева - варианты развития событий. Цифры (0, 1 и -1) - выигрыш, то есть будет ли игрок победителем, если изберёт тот или иной вариант.

    Итак, с чего начинать. Вначале надо определить, какое решение будет лучшим и худшим. Предположим, что самое предпочтительное развитие событий для Ольги - попробовать курить, но не продолжать этого делать. Присвоим этому варианту выигрыш 1 (первая цифра левой нижней ветки). В худшем случае девушка станет зависимой от курения: присваиваем этому варианту выигрыш -1 (первая цифра правой нижней ветки). Таким образом, ветка дерева с вариантом вообще не пробовать курить получает 0.

    Предположим, что Ольга решила попробовать курить. Что дальше? Бросит она или нет? Это уже будет решать Будущая Ольга, на рисунке она вступает в игру по ветке «Попробовать». Если у неё уже сформировалась зависимость, то бросать курить она не захочет, поэтому варианту «Продолжать» ставим выигрыш 1 (вторая цифра правой нижней ветки).

    Что мы получаем? Нынешняя Ольга будет в выигрыше в том случае, если попробует курить, но не попадёт в зависимость. А это, в свою очередь, зависит от Будущей Ольги, для которой выгоднее курить (она уже курит довольно давно, значит, у неё есть зависимость, стало быть, бросать она не захочет). Так стоит ли так рисковать? Может, сыграть вничью: получить выигрыш 0 и вообще не пробовать курить?

    Что делать

    Просчитывать стратегию можно не только в игре с кем-то, но и в игре с самим собой. Попробуйте нарисовать дерево игры, и вы увидите, приведёт ли ваше нынешнее решение к выигрышу.

    4. Игра в аукцион

    Есть разные типы аукционов. Например, в фильме «Двенадцать стульев» проходил так называемый английский аукцион. Его схема проста: побеждает тот, кто предлагает наибольшую сумму за выставленный лот. Обычно устанавливается минимальный шаг для поднятия цены, в остальном ограничений нет.

    Пример

    В эпизоде с аукционом из «Двенадцати стульев» Остап Бендер допустил стратегическую ошибку. Вслед за предложением в 145 рублей за лот он поднял цену сразу до двухсот.

    С точки зрения теории игр Остапу следовало повышать ставку, но минимально до тех пор, пока не останется конкурентов. Таким образом, он смог бы сэкономить деньги и не попасть впросак: Остапу не хватило 30 рублей, чтобы оплатить комиссионный сбор.

    Что делать

    Есть игры, такие как аукцион, в которые нужно играть только головой. Заранее определитесь с тактикой и подумайте о максимальной сумме, которую вы готовы отдать за лот. Дайте себе слово не превышать лимит. Этот шаг поможет справиться с азартом, если он вдруг вас настигнет.

    5. Игра на обезличенном рынке

    Обезличенный рынок - это банки, страховые компании, подрядчики, консульства. В общем, те участники игры, у которых нет имён и фамилий. Они обезличены, но при этом ошибочно полагать, что правила теории игр к ним неприменимы.

    Пример

    Максим обращается в банк в надежде получить кредит. Его кредитная история не идеальна: два года назад он шесть месяцев отказывался гасить другой заём. Сотрудник, который принимает документы, говорит, что, скорее всего, Максим кредит не получит.

    Тогда Максим просит разрешения донести документы. Он приносит выписку из больницы, подтверждающую, что его отец в те полгода был серьёзно болен. Максим пишет заявление, где указывает причины задержки выплаты предыдущего заёма (деньги нужны были на лечение отца). И через некоторое время получает новый кредит.

    Что делать

    Когда вы ведёте дела с обезличенными игроками, всегда помните, что за ними скрываются личности. Придумывайте, как втянуть соперников в игру, и устанавливайте свои правила.

    Теория игр - новая наука, но её уже изучают в лучших университетах мира. В издательстве «МИФ» вышел учебник «Стратегические игры». Он пригодится, если вы хотите научиться анализировать каждое своё действие, принимать взвешенные решения, лучше понимать не только других, но и себя.


    Теория игр является математическим методом исследования оптимальных стратегий в играх. Под термином «игра» следует понимать взаимодействие двух или более сторон, которые стремятся реализовать свои интересы. У каждой стороны есть и своя стратегия, способная привести к победе или поражению, что зависит от того, каким образом ведут себя игроки. Благодаря теории игр появляется возможность найти максимально эффективную стратегию, беря во внимание представления о других игроках и их потенциале.

    Теория игр представляет собой особый раздел исследования операций. В большинстве случаев методы теории игр используются в экономике, но иногда и в других социальных науках, например, в , политологии, социологии, этике и некоторых других. С 70-х годов XX века она также стала использоваться и биологами с целью изучения поведения животных и теории эволюции. Кроме того, сегодня теория игр имеет очень большое значение в области кибернетики и . Именно поэтому мы и хоти вам о ней рассказать.

    История теории игр

    Наиболее оптимальные стратегии в области математического моделирования учёные предлагали ещё в XVIII веке. В XIX веке задачи ценообразования и производства в условиях рынка с малой конкуренцией, впоследствии ставшие классическими примерами теории игр, рассматривались такими учёными, как Жозеф Бертран и Антуан Курно. А в начале XX столетия выдающимися математиками Эмилем Борелем и Эрнстом Цермело была выдвинута идея математической теории конфликта интересов.

    Истоки математической теории игр следует искать в неоклассической экономике. Изначально основы и аспекты этой теории излагались в работе Оскара Моргенштерна и Джона фон Неймана «Теория игр и экономическое поведение» в 1944 году.

    Представленная математическая область также нашла некоторое отражение и в социальной культуре. Например, в 1998 году Сильвия Назар (американская журналистка и писательница) выпустила книгу, посвящённую Джону Нэшу – лауреату Нобелевской премии по экономике и специалисту по теории игр. В 2001 году по мотивам данной работы сняли фильм «Игры разума». А ряд американских телешоу, таких как «NUMB3RS», «Alias» и «Friend or Foe» время от времени в своих эфирах также ссылаются на теорию игр.

    Но отдельно следует сказать о Джоне Нэше.

    В 1949 году им была написана диссертация на тему теории игр, а через 45 лет он был удостоен Нобелевской премии по экономике. В самых первых концепциях теории игр подвергались анализу игры антагонистического типа, в которых имеются игроки, выигравшие за счёт проигравших. Но Джон Нэш разработал такие аналитические методы, согласно которым все игроки либо проигрывают, либо выигрывают.

    Разработанные Нэшем ситуации впоследствии назвали «равновесием по Нэшу». Отличаются они тем, что все стороны игры применяют наиболее оптимальные стратегии, благодаря чему и создаётся устойчивое равновесие. Сохранять равновесие очень выгодно для игроков, ведь в противном случае какое-то одно изменение может негативно сказаться на их положении.

    Благодаря деятельности Джона Нэша теория игр получила мощный толчок в своём развитии. Кроме того, были подвергнуты серьёзному пересмотру математические инструменты экономического моделирования. Джон Нэш смог доказать, что классическая точка зрения на вопрос конкуренции, где каждый играет только за себя, не является оптимальной, и самыми эффективными стратегиями являются такие, в которых игроки делают лучше себе, изначально делая лучше другим.

    Несмотря на то, что изначально в поле зрения теории игр находились и экономические модели, до 50-х годов прошлого века она была лишь формальной теорией, ограниченной рамками математики. Однако со второй половины XX века предпринимаются попытки её использования и в экономике, и в антропологии, и в технике, и в кибернетике, и в биологии. В период Второй мировой войны и по её окончании теорию игр начали рассматривать военные, разглядевшие в ней серьёзный аппарат в деле развития стратегических решений.

    В период 60-70-х годов интерес к данной теории угас, невзирая даже на то, что она давала хорошие математические результаты. Но с 80-х годов начинается активное применение теории игр на практике, главным образом, в менеджменте и экономике. В течение же нескольких последних десятилетий актуальность её значительно выросла, а некоторые современные экономические направления и вовсе невозможно представить без неё.

    Не будет лишним сказать также и о том, что существенный вклад в развитие теории игр внёс труд «Стратегия конфликта» 2005 года лауреата Нобелевской премии по экономике Томаса Шеллинга. В своей работе Шеллинг рассмотрел множество стратегий, которыми пользуются участники конфликтного взаимодействия. Данные стратегии совпали с тактиками конфликт-менеджмента и аналитическими принципами, применяющимися в , а также с тактиками, которые используются для управления конфликтами в организациях.

    В психологической науке и ряде других дисциплин понятие «игра» имеет несколько иной смысл, чем в математике. Культурологическая интерпретация термина «игра» была представлена в книге «Homo Ludens» Йохана Хёйзинга, где автор толкует о применении игр в этике, культуре и правосудии, а также указывает на то, что сама игра существенно превосходит человека по возрасту, ведь и животные тоже склонны играть.

    Также понятие «игра» можно встретить в концепции Эрика Бёрна, известного по книге « ». Здесь, правда, идёт речь об исключительно психологических играх, основой которых является трансакционный анализ.

    Применение теории игр

    Если говорить о математической теории игр, то в настоящее время она находится на стадии активного развития. Но математическая база по своей сути является очень затратной, по причине чего применяется она, главным образом, только если цели оправдывают средства, а именно: в политике, экономике монополий и распределения рыночной власти и т.д. В остальном же, теория игр применяется в исследованиях поведения людей и животных в огромном количестве ситуаций.

    Как уже и было сказано, сначала теория игр развивалась в пределах границ экономической науки, благодаря чему стало возможным определить и интерпретировать поведение в различных ситуациях экономических агентов. Но позже область её применения значительно расширилась и стала включать в себя множество социальных наук, благодаря чему с помощью теории игр сегодня объясняется поведение человека в психологии, социологии и политологии.

    Специалисты используют теорию игр не только для того чтобы объяснить и предсказать человеческое поведение – было предпринято множество попыток по использованию этой теории с целью разработать эталонное поведение. Кроме того, философы и экономисты долгое время при помощи неё старались как можно лучше понять хорошее или достойное поведение.

    Таким образом, можно заключить, что теория игр стала настоящим переломным моментом в развитии множества наук, и сегодня является неотъемлемой частью процесса изучения различных аспектов поведения человека.

    ВМЕСТО ЗАКЛЮЧЕНИЯ: Как вы заметили, теория игр довольно тесно взаимосвязана с конфликтологией – наукой, посвящённой изучению поведения людей в процессе конфликтного взаимодействия. И, на наш взгляд, эта область является одной из самых главных не только среди тех, в которых теория игр должна применяться, но и среди тех, которые должен изучать сам человек, ведь конфликты, как ни крути, являются частью нашей жизни.

    Если у вас есть желание разобраться в том, и какие вообще существуют стратегии поведения в них, мы предлагаем вам пройти наш курс по самопознанию, который в полной мере предоставит вам такую информацию. Но, помимо этого, пройдя наш курс, вы сможете провести всестороннюю оценку своей личности вообще. А это значит, что вы будете знать и о том, как вести себя в случае конфликта, и каковы ваши личностные преимущества и недостатки, жизненные ценности и приоритеты, предрасположенности к работе и творчеству, и много чего ещё. В общем, это очень полезный и нужный инструмент для каждого, кто стремится к развитию.

    Наш курс находится – смело приступайте к самопознанию и совершенствуйте себя.

    Мы желаем вам успехов и умения быть победителем в любой игре!