• Что можно приготовить из кальмаров: быстро и вкусно

    • Комбинированная броня, также композитная броня, реже многослойная броня тип брони, состоящий из двух или большего количества слоёв металлических или неметаллических материалов. «Пассивная защитная система (конструкция), содержащая, как минимум, два различных материала (не считая воздушных промежутков), предназначенная для обеспечения сбалансированной защиты от кумулятивных боеприпасов и боеприпасов кинетического действия, используемых в боекомплекте одной пушки высокого давления».

      В послевоенный период основным средством поражения тяжелых бронированных целей (основной боевой танк, ОБТ) становятся кумулятивные средства поражения, представленные, в первую очередь, динамично развивавшимися в 1950-1960-х годах противотанковыми управляемыми ракетами (ПТУР), бронепробивная способность боевых частей которых к началу 1960-х годов превысила 400 мм броневой стали.

      Ответ для парирования угрозы со стороны кумулятивных средств поражения был найден в создании многослойной комбинированной брони с более высокой, по сравнению с гомогенной стальной броней, противокумулятивной стойкостью, содержащей материалы и конструктивные решения, в совокупности обеспечивающие повышенную струегасящую способность бронезащиты. Позднее, в 1970-х годах, на Западе были приняты на вооружение и получили распространение бронебойные оперенные подкалиберные снаряды 105 и 120-мм танковых пушек с сердечником из тяжелого сплава, обеспечение защиты от которых оказалось значительно более сложной задачей.

      Разработка комбинированной брони для танков была начата практически одновременно в СССР и США во второй половине 1950-х годов и применялась на ряде опытных танков США того периода. Тем не менее, среди серийных танков комбинированная броня была применена на советском основном боевом танке Т-64, чьё производство было начато в 1964 году, и использовалась на всех последующих основных боевых танках СССР.

      На серийных танках других стран комбинированная броня различных схем появилась в 1979-1980 годах на танках «Леопард 2» и «Абрамс» и с 1980-х годов стала стандартом в мировом танкостроении. В США комбинированная броня для бронекорпуса и башни танка «Абрамс», под общим обозначением «Special Armor», отражавшим гриф секретности проекта, или «Burlington», была разработана Ballistic Research Laboratory (BRL) к 1977 году, включала в себя керамические элементы, и была рассчитана на защиту от кумулятивных боеприпасов (эквивалентная толщина по стали не хуже 600…700 мм), так и бронебойных оперённых снарядов типа БОПС (эквивалентная толщина по стали не хуже 350…450 мм), однако, применительно к последним, не обеспечивала выигрыша по массе в сравнении с равностойкой стальной броней, и на поздних серийных модификациях последовательно наращивалась. Из-за высокой по сравнению с гомогенной бронёй стоимости и необходимости применения броневых преград большой толщины и массы для защиты от современных кумулятивных боеприпасов, применение комбинированной брони ограничивается основными боевыми танками и, реже, основным или навесным дополнительным бронированием БМП и других бронемашин лёгкой категории.

    Связанные понятия

    Кумулятивно-осколочный снаряд (КОС, иногда также называют многофункциональный снаряд) - артиллерийский боеприпас основного назначения, совмещающий выраженное кумулятивное и более слабое осколочно-фугасное действие.

    Бронещит - защитное устройство, устанавливаемое на оружие (например, пулемёт или орудие). Используется для защиты расчёта орудия от пуль и осколков. Также бронещитом называется устройство из подручных материалов, иногда использующееся в поле для защиты стрелка от огня.

    Многоствольная компоновка - разновидность компоновочной схемы бронетехники, при которой основное вооружение единицы бронетехники включает в себя более одной пушки, орудия или миномёта, либо одну или несколько многоствольных артсистем (не считая дополнительного ствольного вооружения, такого как пулемёты различного типа или устанавливаемые снаружи безоткатные орудия). В силу ряда причин технического и технологического характера, многоствольная компоновка применяется, главным образом, при создании самоходных...

    Бронированное (защитное) окно - светопрозрачная конструкция, защищающая людей и материальные ценности, находящихся в помещении от поражения или проникновения извне через оконный проём.

    Гусма́тик , или гусма́тиковая шина - колесная шина, наполненная эластичной массой. Широко применявшиеся в военной технике в первой половине XX века, в настоящее время гусматики практически вышли из употребления и ограниченно применяются лишь на некоторых специальных (строительных и т. п.) машинах.

    Корабельная броня - защитный слой, обладающий достаточно большой прочностью и предназначенный для защиты частей корабля от воздействия средств поражения противника.

    Цементи́рованная броня́ Кру́ппа (англ. Krupp cemented armour, K.C.A.) - вариант дальнейшего развития брони Круппа. Процесс изготовления во многом такой же с небольшими изменениями в композиции сплава: 0,35 % углерода, 3,9 % никеля, 2,0 % хрома, 0,35 % марганца, 0,07 % кремния, 0,025 % фосфора, 0,020 % серы. K.C.A. обладала жёсткой поверхностью брони Круппа путём применения углеродосодержащих газов, но также обладала более высокой «волоконной» эластичностью в задней части листа. Эта увеличенная эластичность...

    Донный газогенератор - устройство в задней части некоторых артиллерийских снарядов, увеличивающее их дальность до 30 %.

    Объект 172-2М «Буйвол» - советский опытный основной боевой танк. Создан в конструкторском бюро Уралвагонзавода. Серийно не производился.

    Реликт - российский модульный комплекс динамической защиты третьего поколения разработки НИИ Стали, принятый на вооружение в 2006 году для унификации танков Т-72Б2 «Урал», Т-90СМ и Т-80 по уровню защищённости. Представляет собой эволюционное развитие советского комплекса динамической защиты «Контакт-5»; предназначен для модернизации бронетехники средней и тяжёлой весовой категорий (боевой машины БМПТ, танков Т-80БВ, Т-72Б, Т-90) для обеспечения защиты от большинства современных ОБПС западного производства...

    Активная защита - разновидность защиты боевой машины (БМ), применяемая в активном режиме на летательных аппаратах (ЛА), бронетехнике и так далее.

    Танк (англ. tank) - бронированная боевая машина, чаще всего на гусеничном ходу, как правило с пушечным вооружением, обычно во вращающейся полноповоротной башне, предназначенной в основном для стрельбы прямой наводкой.На ранних стадиях развития танкостроения иногда выпускали танки с исключительно пулемётным вооружением, а после Второй мировой войны проводились эксперименты по созданию танков с ракетным вооружением в качестве основного. Известны варианты танков с огнемётным вооружением. Определения...

    Пневмати́ческое орýжие - разновидность стрелкового оружия, в котором снаряд вылетает под воздействием газа, находящегося под давлением.

    Бронебойная авиационная бомба (в ВВС СССР и ВВС ВМФ СССР обозначалась аббревиатурой БрАБ или БРАБ) - класс авиационных бомб, предназначенных для поражения объектов, имеющих мощную броневую защиту (крупные боевые корабли, бронебашенные береговые батареи, бронированные конструкции долговременных оборонительных сооружений (бронекупола и т. д.). Также могли поражать все те цели (кроме взлетно-посадочных полос с твердым покрытием), для поражения которых штатно применялись бетонобойные авиабомбы. В настоящее...

    Авиационная бомба или авиабомба, один из основных видов авиационных средств поражения (АСП). Сбрасывается с самолёта или другого летательного аппарата, отделяясь от держателей под действием силы тяжести или с небольшой начальной скоростью (при принудительном отделении).

    Осколочно-фугасный снаряд (ОФС) - артиллерийский боеприпас основного назначения, совмещающий осколочное и фугасное действие и предназначенный для поражения большого количества типов целей: поражения живой силы противника на открытой местности или в укреплениях, уничтожения легкобронированной техники, разрушения зданий, укреплений и фортификационных сооружений, проделывания проходов в минных полях и т. п.

    «То́чка » (индекс ГРАУ - 9K79, по договору РСМД - ОТР-21) - советский тактический ракетный комплекс дивизионного звена (с конца 1980-х годов переведён в армейское звено) разработки Коломенского КБ машиностроения под руководством Сергея Павловича Непобедимого.

    Противотанковый управляемый реактивный снаряд (сокр. ПТУРС) - разновидность управляемых реактивных боеприпасов, предназначенная для стрельбы из ствольного артиллерийского и танкового вооружения (пушки или орудия). Часто отождествляется с противотанковой управляемой ракетой (ПТУР), хотя синонимами два указанных термина не являются.

    Малокалиберный фугасный снаряд - вид снаряжённого взрывчатым веществом боеприпаса, поражающее действие которого достигается, главным образом за счёт образующейся при взрыве ударной волны. В этом состоит его принципиальное отличие от осколочных боеприпасов, поражающее действие которых по цели связано преимущественно с осколочным полем, образующимся в результате дробления корпуса снаряда при подрыве разрывного заряда.

    Подкалиберные боеприпасы - боеприпасы, диаметр боевой части (сердечника) которых меньше диаметра ствола. Чаще всего используются для борьбы с бронированными целями. Увеличение бронепробиваемости по сравнению с обычными бронебойными боеприпасами происходит за счёт увеличения начальной скорости боеприпасов и удельного давления в процессе пробития брони. Для изготовления сердечника используются материалы с наибольшим удельным весом - на основе вольфрама, обеднённого урана и другие. Для стабилизации...

    «Тигр » - российский многоцелевой автомобиль повышенной проходимости, бронеавтомобиль, армейский автомобиль-вседорожник. Производится на Арзамасском машиностроительном заводе с двигателями ЯМЗ-5347-10 (Россия), Cummins B-205. Некоторые ранние образцы оснащались двигателями ГАЗ-562 (лицензионный Steyr), Cummins B-180 и B-215.

    Противотанковая граната - взрывное или зажигательное устройство, применяемое пехотой для борьбы с бронетехникой с использованием мускульной силы либо же устройств, не относящихся к категории артиллерийских. Противотанковые мины формально не относятся к этой категории оружия, однако существовали универсальные мины-гранаты и противобортовые мины, аналогичные по устройству гранатам. Противотанковые ракеты могут относится к категории «гранат», в зависимости от национальной классификации такого оружия...

    Мортира-миномёт (англ. gun-mortar) - артиллерийское орудие промежуточного типа между мортирой и типом артиллерийской системы, которую в настоящее время называют миномётом - обладающее коротким стволом (с длиной ствола меньше, чем 15 калибров), заряжаемое с дульной или с казённой части ствола и установленное на массивной плите (причём импульс отдачи передаётся плите не напрямую от ствола, а косвенно - через конструкцию лафета). Данный конструкционный тип получил значительное распространение во время...

    Кумулятивный эффект , эффект Манро (англ. Munroe effect) - усиление действия взрыва путём его концентрации в заданном направлении, достигаемое применением заряда с выемкой, противоположной местонахождению детонатора и обращённой в сторону поражаемого объекта. Кумулятивная выемка обычно конической формы, покрывается металлической облицовкой, толщина которой может варьироваться от долей миллиметра до нескольких миллиметров.

    Бронебойная пуля - особый тип пули, предназначенный для поражения легкобронированных целей. Относится к так называемым специальным боеприпасам, созданным для расширения тактических возможностей стрелкового оружия.

    Очень часто можно слышать как броню сравнивают в соответствии с толщиной стальных пластин 1000, 800мм. Или, например, что определённый снаряд может пробить какое-то «n»-количество мм брони. Факт в том, что сейчас данные расчёты не объективны. Современная броня не может быть описана как эквивалент какой-либо толщины гомогенной стали. В настоящее время существует два типа угроз: кинетическая энергия снаряда и химическая энергия. Под кинетической угрозой понимается бронебойный снаряд или, проще говоря, болванка обладающая большой кинетической энергией. В данном случае нельзя рассчитывать защитные свойства брони, исходя из толщины стальной пластины. Так, снаряды с обедненным ураном или карбидом вольфрама проходят сквозь сталь как нож в масло и толщина любой современной брони, если бы она была гомогенной сталью, не выдержала бы попадания подобных снарядов. Нет никакой брони толщиной в 300мм, которая эквивалентна 1200мм стали, и следовательно способной останавливать снаряд, который будет застревать и торчать в толще броневого листа. Успех защиты от бронебойных снарядов кроется в изменении вектора его воздействия на поверхность брони. Если повезёт, то при попадании будет лишь небольшая вмятина, а если не повезёт, то снаряд прошьёт всю броню, независимо от того толстая она или тонкая. Проще говоря, броневые листы являются относительно тонкими и твёрдыми, и повреждающий эффект во многом зависит от характера взаимодействия со снарядом. В американской армии для увеличения твёрдости брони используется обедненный уран, в других странах карбид вольфрама, который фактически является более твёрдым. Около 80% способности танковой брони останавливать снаряды-болванки приходится на первые 10-20 мм современной брони. Теперь рассмотрим химическое воздействие боеголовок. Химическая энергия представлена двумя типами: HESH (Противотанковые бронебойно-фугасные) и HEAT (Кумулятивный снаряд). HEAT - сегодня больше распространена, и не имеет никакого отношения к высоким температурам. В HEAT используется принцип фокусировки энергии взрыва в очень узкой струе. Струя образуется, когда геометрически правильный конус снаружи обкладывают взрывчаткой. При детонации 1/3 энергии взрыва используется на формирование струи. Она за счёт высокого давления (не температуры) проникает сквозь броню. Простейшей защитой от данного типа энергии служит отставленные на полметра от корпуса слой брони, при этом получается рассеивание энергии струи. Этот приём использовался в период второй мировой войны, когда русские солдаты обкладывали корпус танка сеткой-рабицей от кроватей. Сейчас подобным образом поступают израильтяне на танке Меркава, они для защиты кормы от ПТУР и гранат РПГ используют стальные шары, висящие на цепях. Для этих же целей на башне установливается большая кормовая ниша, к которой они крепятся. Другим методом защиты является использование динамической или реактивной брони. Возможно также применение комбинированной динамической и керамической брони (такая как Chobham). При соприкосновении струи расплавленного металла с реактивной бронёй происходит детонация последней, образующаяся ударная волна дефокусирует струю, устраняя её поражающий эффект. Броня Chobham работает подобным образом, но в данном случае в момент взрыва отлетают куски керамики, превращающиеся в облако плотной пыли, которая полностью нейтрализует энергию кумулятивной струи. HESH (Противотанковые бронебойно-фугасные) - боеголовка работает следующим образом: после взрыва она обтекает броню как глина и передаёт огромный импульс через металл. Далее, подобно биллиардным шарам, частицы брони сталкиваются друг с другом и, тем самым, защитные пластины разрушаются. Материал бронирования способен, разлетаясь на мелкую шрапнель, травмировать экипаж. Защита от такой брони подобна вышеописанной для HEAT. Резюмируя вышесказанное, хочется отметить, что защита от кинетического воздействия снаряда сводится к нескольким сантиметрам металлизированной брони, когда как защита от HEAT и HESH заключается в создании отставленной брони, динамической защиты, а также некоторых материалов (керамика).

    Все защитные структуры бронеодежды можно разделить на пять групп, в зависимости от применяемых материалов:

    Текстильная (тканая) броня на основе арамидных волокон

    Сегодня баллистические ткани на основе арамидных волокон являются базовым материалом для гражданских и военных бронежилетов. Баллистические ткани производятся во многих странах мира и существенно различаются не только названиями, но характеристиками. За границей это — кевлар (США) и тварон (Европа), а в России - целый ряд арамидных волокон, заметно отличающихся от американских и европейских по своим химическим свойствам.

    Что же представляет собой арамидное волокно? Выглядит арамид как тонкие волокна-паутинки желтого цвета (очень редко используют другие цвета). Из этих волокон сплетаются арамидные нити, а уже из нитей впоследствии изготавливается баллистическая ткань. Арамидное волокно имеет очень высокую механическую прочность.

    Большинство специалистов в области разработки бронеодежды считают, что потенциал российских арамидных волокон до сих пор полностью не реализован. Например, броневые структуры из наших арамидных волокон превосходят зарубежные в соотношении «характеристики защиты/вес». А некоторые композитные структуры по этому показателю ничуть не хуже структур из сверхвысокомолекулярного полиэтилена (СВМПЭ). При этом, физическая плотность СВМПЭ в 1,5 раз меньше.

    Марки баллистических тканей :

    • Кевлар ® (Дюпон, США)
    • Тварон ® (Тейджин Арамид, Нидерланды)
    • СВМ, РУСАР® (Россия)
    • Херакрон® (Колон, Корея)

    Металлическая броня на основе стали (титан) и алюминиевых сплавов

    После длительного перерыва со времен средневековых доспехов, бронепластины изготавливались из стали и широко использовались во время Первой и Второй Мировых войн. Легкие сплавы стали применяться позже. Например, во время войны в Афганистане получили распространение бронежилеты с элементами из броневого алюминия и титана. Современные броневые сплавы позволяют уменьшить толщину панелей в два-три раза по сравнению с панелями, изготовленными из стали, и, следовательно, в два-три раза уменьшают вес изделия.

    Алюминиевая броня. Алюминий превосходит стальную броню, обеспечивая защиту от бронебойных пуль калибра 12,7 или 14,5 мм. Кроме того, алюминий обеспечен сырьевой базой, более технологичен, хорошо сваривается и обладает уникальной противоосколочной и противоминной защитой.

    Титановые сплавы. Основным преимуществом титановых сплавов считается сочетание коррозионной стойкости и высоких механических свойств. Чтобы получить сплав титана с заранее определенными свойствами, его подвергают легированию хромом, алюминием, молибденом и другими элементами.

    Керамическая броня на основе композиционных керамических элементов

    С начала 80-х годов в производстве бронеодежды применяются керамические материалы, превосходящие металлы по соотношению «степень защиты/вес». Однако, использование керамики возможно только в сочетании с композитами из баллистических волокон. При этом необходимо решать проблему низкой живучести подобных бронепанелей. Также не всегда удается эффективно реализовать все свойства керамики, поскольку такая бронепанель требует бережного обращения.

    В Российском Минобороны задачу высокой живучести керамических бронепанелей обозначили еще в 1990-х годах. До тех пор керамические бронепанели сильно проигрывали стальным по этому показателю. Благодаря такому подходу сегодня российские войска имеют надежную разработку - бронепанели семейства «Гранит-4».

    Основная масса бронежилетов за границей состоит из композитных броневых панелей, которые изготавливаются из цельных керамических монопластин. Причина этого в том, что для солдата во время боевых действий шанс быть многократно пораженным в область одной и той же броневой панели крайне мал. Во-вторых, такие изделия гораздо более технологичны, т.е. менее трудоемки, а значит, и стоимость их гораздо ниже стоимости набора из плиток меньшего размера.

    Используемые элементы:

    • Оксид алюминия (корунд);
    • Карбид бора;
    • Карбид кремния.

    Композитная броня на основе высокомодульного полиэтилена (слоистого пластика)

    На сегодняшний день наиболее передовым видом бронеодежды с 1 по 3 класс (с точки зрения веса) считаются броневые панели на основе волокон СВМПЭ (сверхвысокомодульного полиэтилена).

    Волокна СВМПЭ имеют высокую прочность, догоняя арамидные. Баллистические изделия из СВМПЭ имеют положительную плавучесть и не теряют при этом своих защитных свойств, в отличие от арамидных волокон. Однако СВМПЭ совершенно не подходит для изготовления бронежилетов для армии. В военных условиях велика вероятность контакта бронежилета с огнем или раскаленными предметами. Более того, зачастую бронежилет используется в качестве подстилки. А СВМПЭ, какими бы свойствами он ни обладал, остается все же полиэтиленом, предельная температура эксплуатации которого не превышает 90 градусов Цельсия. Однако СВМПЭ отлично подходит для изготовления полицейских жилетов.

    Стоит заметить, что мягкая бронепанель, изготовленная из волокнистого композита, не способна обспечить защиту от пуль с твердосплавным или термоупрочненным сердечником. Максимум, что может обеспечить мягкая структура из ткани — защита от пистолетных пуль и осколков. Для защиты от пуль длинноствольного оружия необходимо использовать бронепанели. При воздействии пули длинноствольного оружия создается высокая концентрация энергии на малой площади, к тому же такая пуля является острым поражающим элементом. Мягкие ткани в пакетах разумной толщины их уже не удержат. Именно поэтому целесообразно использовать СВМПЭ в конструкции с композитным основанием бронепанелей.

    Основными поставщиками арамидных волокон из СВМПЭ для баллистических продуктов являются:

    • Дайнима® (ДСМ, Нидерланды)
    • Спектра® (США)

    Комбинированная (многослойная) броня

    Материалы для бронежилетов комбинированного типа подбираются в зависимости от условий, в которых будет эксплуатироваться бронеодежда. Разработчики СИБ комбинируют применяемые материалы и используют их вместе — таким образом удалось значительно улучшить защитные свойства бронеодежды. Текстильно-металлическая, керамикоорганопластиковая и другие виды комбинированной брони на сегодняшний день широко используются во всем мире.

    Уровень защиты бронеодежды варьируется в зависимости от материалов, которые в ней используются. Однако, сегодня решающую роль играют не только сами материалы для бронежилетов, но и специальные покрытия. Благодаря достижениям нанотехнологии, уже разрабатываются модели, удароустойчивость которых многократно повышена при значительном уменьшении толщины и веса. Такая возможность возникает благодаря нанесению на гидрофобизированный кевлар специального геля с наночистицами, повышающего стойкость кевлара к динамическому удару в пять раз. Такая броня позволяет существенно уменьшить размеры бронежилета, сохраняя тот же класс защиты.

    О классификации СИЗ читайте .

    Сценарии будущих войн, включая уроки, выученные в Афганистане, будут создавать асимметрично-смешанные вызовы для солдат и их амуниции. Как результат, необходимость в более прочной и в то же время более легкой броне продолжит увеличиваться. Cовременные виды баллистической защиты для пехотинцев, автомобилей, летательных аппаратов и кораблей настолько разнообразны, что вряд ли можно охватить их все в рамках одной небольшой статьи. Остановимся на обзоре последних инноваций в этой области и очертим основные направления их развития. Композитное волокно - основа для создания композитных материалов. Наиболее прочные конструкционные материалы в настоящее время делаются из волокон, к примеру из углеволокна или сверхвысокомолекулярного полиэтилена (СВМПЭ, UHMWPE).

    В течение последних десятилетий было создано или усовершенствовано много композитных материалов, известных под торговыми марками KEVLAR, TWARON, DYNEEMA, SPECTRA. Они изготовлены путем химического связывания или волокон параарамида, или высокопрочного полиэтилена.

    Арамиды (Aramid) - класс термостойких и прочных синтетических волокон. Название происходит от словосочетания «ароматические полиамиды» (aromatic polyamide). В таких волокнах цепочки молекул строго ориентированы в определенном направлении, что позволяет управлять их механическими характеристиками.

    К ним же принадлежат метаарамиды (например, NOMEX). Большую часть составляют сополиамиды, известные под маркой Тechnora производства японского химического концерна Teijin. Арамиды допускают большее разнообразие направлений волокон по сравнению с СВМПЭ. Параарамидные волокна, такие как KEVLAR, TWARON и Heracron, имеют великолепную прочность при минимальном весе.

    Высокопрочное полиэтиленовое волокно DYNEEMA, выпускаемое компанией DSM Dyneema, считается самым прочным в мире. Оно в 15 раз прочнее стали и на 40% прочнее арамидов при том же весе. Это единственный композит, способный защитить от 7,62-мм пули АК-47.

    KEVLAR - широко известная зарегистрированная торговая марка параарамидного волокна. Разработанное компанией DuPont в 1965 г., волокно выпускается в виде нитей или ткани, которые используются в качестве основы при создании композитных пластиков. При равном весе KEVLAR в пять раз прочнее стали, при этом более гибок. Для изготовления так называемых «мягких бронежилетов» используется KEVLAR XP, такая «броня» состоит из десятка слоев мягкой ткани, способной затормозить колюще-режущие предметы и даже пули с низкой энергетикой.

    NOMEX - еще одна разработка DuPont. Огнеупорное волокно из метаарамида было разработано еще в 60-е гг. прошлого столетия и впервые представлено в 1967 году.

    Полибензоимидазол (PBI) - синтетическое волокно с чрезвычайно высокой температурой плавления, которое практически невозможно поджечь. Используется для защитных материалов.

    Материал под маркой Rayon представляет собой переработанные волокна целлюлозы. Поскольку Rayon создан на основе натуральных волокон, он не является ни синтетическим, ни натуральным.

    SPECTRA - композитное волокно, выпускаемое компанией Honeywell. Является одним из прочнейших и легчайших волокон в мире. Используя фирменную технологию SHIELD, компания вот уже больше двух десятилетий производит баллистическую защиту для войсковых и полицейских подразделений на основе материалов SPECTRA SHIELD, GOLD SHIELD и GOLD FLEX. SPECTRA - ярко-белое полиэтиленовое волокно, устойчивое к химическим повреждениям, свету и воде. По заявлениям производителя, этот материал прочнее стали и на 40% прочнее арамидного волокна.

    TWARON - торговое название прочного термоустойчивого параарамидного волокна производства компании Teijin. По оценкам производителя, использование материала для защиты бронетехники может снизить массу брони на 30–60% по сравнению с броневой сталью. Ткань Twaron LFT SB1, выпущенная по фирменной технологии ламинирования, состоит из нескольких слоев волокон, расположенных под различными углами друг к другу и связанных между собой наполнителем. Она используется для производства легких гибких бронежилетов.

    Сверхвысокомолекулярный полиэтилен (СВМПЭ, UHMWPE), также называемый высокомолекулярным полиэтиленом - класс термопластичных полиэтиленов. Синтетические волоконные материалы под марками DYNEEMA и SPECTRA выдавливаются из геля через специальные фильеры, которые придают волокнам нужное направление. Волокна состоят из сверхдлинных цепочек с молекулярной массой, достигающей 6 млн. СВМПЭ обладают высокой устойчивостью к агрессивным средам. К тому же материал является самосмазывающимся и чрезвычайно устойчив к истиранию - до 15 раз больше, чем углеродистая сталь. По коэффициенту трения сверхвысокомолекулярный полиэтилен сравним с политетра­фторэтиленом (тефлоном), но более износостоек. Материал не имеет запаха, вкуса, нетоксичен.

    Комбинированная броня

    Современная комбинированная броня может быть использована для индивидуальной защиты, бронирования транспортных средств, военно-морских судов, самолетов и вертолетов. Продвинутые технологии и небольшой вес позволяют создать бронезащиту с уникальными характеристиками. К примеру, компания Ceradyne, недавно вошедшая в состав концерна 3M, заключила контракт стоимостью $80 млн с Корпусом морской пехоты США на поставку 77 тыс. высокозащищенных шлемов (Enhanced Combat Helmets, ECH) как часть единой программы по замене средств защиты в Армии США, ВМС и КМП. В шлеме широко применяется сверхвысокомолекулярный полиэтилен вместо арамидных волокон, использовавшихся при изготовлении шлемов предыдущего поколения. Enhanced Combat Helmets похож на Advanced Combat Helmet, состоящий на вооружении в настоящий момент, но тоньше его. Шлем обеспечивает такую же защиту от пуль стрелкового оружия и осколков, что и предыдущие образцы.

    Сержант Кайл Кинан (Kyle Keenan) демонстрирует вмятины от попаданий пистолетных 9-мм пуль с близкой дистанции на своем шлеме Advanced Combat Helmet, полученные в июле 2007 г. во время операции в Ираке. Шлем из композитного волокна способен эффективно защитить от пуль стрелкового оружия и осколков снарядов.

    Человек - не единственное, что требует защиты отдельных жизненно важных органов на поле боя. К примеру, самолеты нуждаются в частичном бронировании, прикрывающем экипаж, пассажиров и бортовую электронику от огня с земли и поражающих элементов боевых частей ракет систем ПВО. В последние годы в этой области было сделано немало важных шагов: разработана инновационная авиационная и корабельная броня. В последнем случае применение мощной брони не получило широкого распространения, однако имеет решающее значение при оснащении судов, проводящих операции против пиратов, наркоторговцев и торговцев людьми: такие корабли сейчас подвергаются атакам не только стрелкового оружия разного калибра, но и обстрелам из ручных противотанковых гранатометов.

    Изготовлением защиты для крупногабаритных транспортных средств занимается подразделение Advanced Armour компании TenCate. Ее серия авиационной брони создана, чтобы обеспечить максимальную защиту при минимальном весе, допускающем ее установку на летательные аппараты. Это достигается применением в линейках брони TenCate Liba CX и TenCate Ceratego CX - наилегчайших из существующих материалов. При этом баллистическая защита брони достаточно высока: к примеру, для TenCate Ceratego она достигает 4-го уровня по стандарту STANAG 4569 и выдерживает множественные попадания. В конструкции бронелистов применяются различные комбинации металлов и керамики, армирование волокнами арамидов, высокомолекулярного полиэтилена, а также угле- и стеклопластики. Спектр летательных аппаратов, использующих бронирование от TenCate, очень широк: от легкого многофункционального турбовинтового Embraer A-29 Super Tucano до «транспортника» Embraer KC-390.

    TenCate Advanced Armour также изготавливает бронирование для малых и больших военных кораблей и гражданских судов. Бронированию подлежат критически важные части бортов, а также судовые помещения: оружейные погреба, капитанский мостик, информационный и коммуникационный центры, системы вооружения. Недавно компания представила т. н. тактический морской щит (Tactical Naval Shield) для защиты стрелка на борту судна. Он может быть развернут для создания импровизированной огневой точки или снят в течение 3 минут.

    Комплекты авиационной брони LAST от компании QinetiQ North America исповедуют подход, применяемый в навесной броне наземных транспортных средств. Части летательного аппарата, требующие защиты, могут быть усилены в течение одного часа силами экипажа, при этом необходимый крепеж уже входит в поставляемые комплекты. Таким образом, могут быть оперативно модернизированы транспортные самолеты Lockheed C-130 Hercules, Lockheed C-141, McDonnell Douglas C-17, а также вертолеты Sikorsky H-60 и Bell 212, если условия выполнения миссии предполагают возможность обстрела из легкого стрелкового оружия. Броня выдерживает попадание бронебойной пули калибра 7,62 мм. Защита одного квадратного метра весит всего 37 кг.

    Прозрачная броня

    Традиционный и наиболее распространенный материал бронирования окон транспортных средств - закаленное стекло. Конструкция прозрачных «бронелистов» проста: между двумя толстыми стеклянными блоками запрессовывается прослойка из прозрачного ламината-поликарбоната. При попадании пули во внешнее стекло основной удар принимают на себя внешняя часть стеклянного «сэндвича» и ламинат, при этом стекло растрескивается характерной «паутиной», хорошо иллюстрируя направление рассеяния кинетической энергии. Слой поликарбоната препятствует проникновению пули во внутренний стеклянный слой.

    Пулестойкое стекло часто называют «пуленепробиваемым». Это ошибочное определение, так как нет стекол разумной толщины, способных противостоять бронебойной пуле калибра 12,7 мм. Современная пуля такого типа имеет медную оболочку и сердечник из твердого плотного материала - например, обедненного урана или карбида вольфрама (по твердости последний сравним с алмазом). Вообще пулестойкость закаленного стекла зависит от многих факторов: калибр, тип, скорость пули, угол встречи с поверхностью и др., поэтому толщину пулестойких стекол зачастую выбирают с двойным запасом. В то же время его масса также увеличивается вдвое.

    PERLUCOR - материал с высокой химической чистотой и выдающимися механическими, химическими, физическими и оптическими свойствами

    Пулестойкое стекло имеет свои известные недостатки: оно не защищает от многочисленных попаданий и имеет слишком большой вес. Исследователи считают, что будущее в этом направлении принадлежит так называемому «прозрачному алюминию». Этот материал представляет собой специальный зеркально отполированный сплав, который вдвое легче и в четыре раза прочнее закаленного стекла. В его основе - оксинитрид алюминия - соединение алюминия, кислорода и азота, которое представляет собой прозрачную керамическую твердую массу. На рынке он известен под торговой маркой ALON. Производят его путем спекания изначально совершенно непрозрачной порошкообразной смеси. После того как смесь расплавится (температура плавления оксинитрида алюминия - 2140°C), ее резко охлаждают. Полученная твердая кристаллическая структура имеет такую же устойчивость к царапинам, как сапфир, то есть она практически не подвержена царапинам. Дополнительная полировка не только делает ее более прозрачной, но и укрепляет поверхностный слой.

    Современные пулестойкие стекла изготавливаются трехслойными: снаружи расположена панель из оксинитрида алюминия, затем идет закаленное стекло, а завершается все слоем прозрачного пластика. Такой «сэндвич» не только прекрасно выдерживает попадания бронебойных пуль из ручного стрелкового оружия, но и способен противостоять более серьезным испытаниям, таким как огонь из пулемета калибра 12,7 мм.

    Традиционно используемое в бронетехнике пулестойкое стекло царапает даже песок во время песчаных бурь, не говоря уже о воздействии на него осколков самодельных взрывных устройств и пуль, выпущенных из АК-47. Прозрачная «алюминиевая броня» гораздо устойчивее к подобному «выветриванию». Фактор, сдерживающий применение такого замечательного материала - его высокая стоимость: примерно в шесть раз выше, чем у­ закаленного стекла. Технология производства «прозрачного алюминия» разработана компанией Raytheon и сейчас предлагается под названием Surmet. При высокой стоимости этот материал все-таки дешевле сапфира, который применяется там, где нужна особенно высокая прочность (полупроводниковые приборы) или устойчивость к царапинам (стекла наручных часов). Поскольку для выпуска прозрачной брони привлекаются все большие производственные мощности, а оборудование позволяет выпускать листы все большей площади, ее цена в итоге может существенно снизиться. К тому же технологии производства все время совершенствуются. Ведь свойства такого «стекла», не пасующего перед обстрелом из пулемета БТР, слишком привлекательны. А если вспомнить, насколько «алюминиевая броня» снижает вес бронемашин, сомнений не остается: за этой технологией - будущее. Для примера: при третьем уровне защиты по стандарту STANAG 4569 типичное остекление площадью 3 кв. м будет весить около 600 кг. Такой излишек сильно влияет на ходовые качества бронемашины и, в итоге, на ее живучесть на поле боя.

    Есть и другие компании, занимающиеся разработками в области прозрачной брони. CeramTec-ETEC предлагает PERLUCOR - стеклокерамику с высокой химической чистотой и выдающимися механическими, химическими, физическими и оптическими свойствами. Прозрачность материала PERLUCOR (свыше 92%) позволяет использовать его везде, где находит применение закаленное стекло, при этом он в три-четыре раза тверже стекла, а также выдерживает экстремально высокие (до 1600°C) температуры, воздействие концентрированных кислот и щелочей.

    Прозрачная керамическая броня IBD NANOTech отличается меньшим весом, чем закаленное стекло той же прочности, - 56 кг/кв. м против 200

    Компания IBD Deisenroth Engineering разработала прозрачную керамическую броню, сопоставимую по свойствам с непрозрачными образцами. Новый материал легче бронестекла примерно на 70% и может, по заявлениям IBD, выдерживать множественные попадания пуль в одни и те же области. Разработка является побочным продуктом процесса создания линейки бронекерамики IBD NANOTech. В процессе разработки компания создала технологии, позволяющие склеивать «мозаику» большой площади из мелких бронеэлементов (технология Mosaic Transparent Armour), а также ламинировать склейки укрепляющими подложками из фирменных нановолокон Natural NANO-Fibre. Такой подход дает возможность выпускать прочные прозрачные бронепанели, которые значительно легче традиционных из закаленного стекла.

    Израильская компания Oran Safety Glass нашла свой путь в технологиях изготовления прозрачных бронелистов. Традиционно на внутренней, «безопасной» стороне стеклянной бронепанели расположен армирующий слой пластика, предохраняющий от разлетающихся осколков стекла внутрь бронемашины при попадании в стекло пуль и снарядов. Такой слой может постепенно покрываться царапинами при неаккуратных протирках, теряя прозрачность, а также имеет свойство отслаиваться. Запатентованная технология ADI укрепления слоев брони не требует такого армирования при соблюдении всех норм безопасности. Другая инновационная технология от OSG - ROCKSTRIKE. Хотя современная многослойная прозрачная броня защищена от ударов бронебойных пуль и снарядов, она подвержена растрескиванию и царапанью от попадания осколков и камней, а также постепенному расслоению бронелиста, - в итоге дорогостоящую бронепанель придется заменить. Технология ROCKSTRIKE является альтернативой армированию металлической сеткой и предохраняет стекло от повреждений твердыми предметами, летящими со скоростью до 150 м/с.

    Защита пехотинцев

    Современный бронежилет комбинирует специальные защитные ткани и твердые броневставки для дополнительной защиты. Такая комбинация может защитить даже от винтовочных 7,62-мм пуль, однако современные ткани уже способны самостоятельно остановить пистолетную пулю калибра 9 мм. Основной задачей баллистической защиты является поглощение и рассеяние кинетической энергии удара пули. Поэтому защита делается многослойной: при попадании пули ее энергия тратится на растяжение длинных прочных композитных волокон по всей площади бронежилета в нескольких слоях, изгиб композитных пластин, и в итоге скорость пули падает с сотен метров в секунду до нуля. Чтобы замедлить более тяжелую и острую винтовочную пулю, летящую со скоростью порядка 1000 м/с, наряду с волокнами требуются вставки из твердых металлических или керамических пластин. Защитные пластины не только рассеи­вают и поглощают энергию пули, но и притупляют ее наконечник.

    Проблемой для применения композитных материалов в качестве защиты может стать чувствительность к температуре, повышенной влажности и соленому поту (некоторых из них). По мнению экспертов, это может вызвать старение и разрушение волокон. Поэтому в конструкции таких бронежилетов необходимо предусмотреть защиту от влаги и хорошую вентиляцию.

    Важные работы ведутся и в области эргономичности бронежилетов. Да, нательная броня защищает от пуль и осколков, но может быть тяжелой, громоздкой, стеснять движения и замедлить передвижение пехотинца настолько, что его беспомощность на поле боя может стать едва ли не большей опасностью. Но в 2012 году в вооруженных силах США, где, согласно статистике, каждый седьмой военнослужащий - женского пола, начались испытания бронежилетов, разработанных специально для женщин. До этого военнослужащие-женщины носили мужскую «броню». Новинка отличается уменьшенной длиной, что предотвращает натирание бедер при беге, а также регулируется в области груди.

    Бронежилеты, использующие вставки из керамической композитной брони от Ceradyne, экспонируются на мероприятии Special Operations Forces Industry Conference 2012

    Решение другого недостатка - значительного веса бронежилета - может произойти с началом применения т. н. неньютоновских жидкостей в качестве «жидкой брони». Неньютоновская жидкость- такая, вязкость которой зависит от градиента скорости ее течения. В настоящий момент большинство бронежилетов, как писалось выше, использует комбинацию мягких защитных материалов и твердых броневставок. Последние и создают основной вес. Если заменить их на контейнеры с неньютоновской жидкостью, это и облегчило бы конструкцию, и сделало бы ее более гибкой. В разное время разработкой защиты на базе такой жидкости вели разные компании. Британское отделение BAE Systems даже представило работающий образец: пакеты со специальным гелем Shear Thickening Liquid, или пулестойким кремом, обладали примерно такими же показателями защиты, что 30-слойный кевларовый бронежилет. Очевидны и недостатки: такой гель после попадания пули просто вытечет через пулевое отверстие. Однако разработки в этой области продолжаются. Возможно использование технологии там, где требуется защита от удара, а не пуль: к примеру, сингапурская компания Softshell предлагает спортивную экипировку ID Flex, спасающую от травм и созданную на основе неньютоновской жидкости. Вполне реально применять такие технологии для внутренних амортизаторов шлемов или элементов пехотной брони - это может уменьшить вес защитного снаряжения.

    Для создания легких бронежилетов компания Ceradyne предлагает броневставки, изготовленные из карбидов бора и кремния, соединенных горячим прессованием, в которые впрессованы волокна композитного материала, ориентированные специальным образом. Такой материал выдерживает множественные попадания, при этом твердые керамические соединения разрушают пулю, а композиты рассеивают и гасят ее кинетическую энергию, обеспечивая структурную целостность бронеэлемента.

    Существует природный аналог волоконных материалов, который может быть применим для создания чрезвычайно легкой, упругой и прочной брони, - паутина. К примеру, волокна паутины крупного мадагаскарского паука Дарвина (Caerostris darwini) обладают ударной вязкостью, до 10 раз превосходящей аналогичный показатель кевларовых нитей. Создать искусственное волокно, схожее по свойствам с такой паутиной, позволила бы расшифровка генома паучьего шелка и создание специального органического соединения для изготовления сверхпрочных нитей. Остается надеяться, что биотехнологии, активно развивающиеся последние годы, предоставят когда-нибудь такую возможность.

    Броня для наземной техники

    Продолжает повышаться и защищенность бронетехники. Одним из распространенных и проверенных способов защиты от снарядов противотанковых гранатометов является применение противокумулятивного экрана. Американская компания АmSafe Bridport предлагает свой вариант - гибкие и легкие сетки Tarian, выполняющие те же функции. Помимо малого веса и простоты установки такое решение имеет еще одно преимущество: в случае повреждения сетка легко заменяется силами экипажа, не требуя применения сварки и слесарных работ в случае выхода из строя традиционных металлических решеток. Компания заключила контракт на поставку Минобороны Соединенного Королевства нескольких сотен таких систем в части, находящиеся сейчас в Афганистане. Аналогичным образом работает комплект Tarian QuickShield, предназначенный для оперативного ремонта и заделывания брешей в традиционных стальных решетчатых экранах танков и БТР. QuickShield поставляется в вакуумной упаковке, минимально занимая обитаемый объем бронетехники, и также проходит сейчас обкатку в «горячих точках».

    Противокумулятивные экраны TARIAN компании АmSafe Bridport могут быть легко установлены и отремонтированы

    Уже упоминавшаяся выше компания Ceradyne предлагает модульные комплекты бронирования DEFENDER и RAMTECH2 для тактических колесных автомобилей, а также грузовиков. Для легких бронеавтомобилей используется композитная броня, максимально защищая экипаж при жестких ограничениях по размеру и весу бронепластин. Ceradyne работает в тесном контакте с производителями бронетехники, давая ее конструкторам возможность в полной мере пользоваться своими разработками. Примером такой глубокой интеграции может служить бронетранспортер BULL, совместная разработка Ceradyne, Ideal Innovations и Oshkosh в рамках тендера MRAP II, объявленного командованием Корпуса морской пехоты США в 2007 г. Одним из его условий было обеспечение защиты экипажа бронемашины от направленных взрывов, случаи применения которых участились в то время в Ираке.

    Германская компания IBD Deisenroth Engineering, специализирующаяся на разработке и изготовлении средств защиты объектов военной техники, разработала концепцию Evolution Survivability («Эволюция живучести») для средних бронемашин и основных боевых танков. Комплексная концепция использует последние разработки в области наноматериалов, используемые в линейке апгрейдов защиты IBD PROTech и уже проходящие испытания. На примере модернизации систем защиты ОБТ Leopard 2 это противоминное усиление днища танка, боковые защитные панели для противодействия самодельным взрывным устройствам и придорожным минам, защита крыши башни от боеприпасов воздушного подрыва, системы активной защиты, поражающие управляемые противотанковые ракеты на подлете и др.

    Бронетранспортер BULL - пример глубокой интеграции защитных технологий Ceradyne

    Концерн Rheinmetall, один из крупнейших производителей оружия и бронемашин, предлагает собственные комплекты апгрейда баллистической защиты различных транспортных средств серии VERHA - Versatile Rheinmetall Armour, «Универсальная броня Rheinmetall». Диапазон ее применения чрезвычайно широк: от броневставок в одежду до защиты военных кораблей. Используются как новейшие керамические сплавы, так и арамидные волокна, высокомолекулярный полиэтилен и др.

    Использование неметаллических комбинированных материалов в бронировании боевых машин ни для кого не является секретом уже много десятилетий. Подобные материалы в дополнение к основной стальной броне начали широко применять с появлением нового поколения послевоенных танков в 1960-70-х годах. Например, советский танк Т-64 имел лобовую броню корпуса с промежуточным слоем из броневого стеклотекстолита (СТБ), а в лобовых деталях башни использовался наполнитель из керамических стержней. Такое решение значительно повышало стойкость бронеобъекта к воздействию кумулятивных и бронебойных подкалиберных снарядов.

    Современные танки оснащены комбинированным бронированием, призванным значительно снижать воздействие поражающих факторов новых противотанковых средств. В частности, стеклотекстолитовый и керамический наполнители используются в комбинированном бронировании отечественных танков Т-72, Т-80 и Т-90, аналогичный материал из керамики применен для защиты британского основного танка «Челленджер» (броня Chobham) и французского основного танка «Леклерк». Композитные пластики используются в качестве подбоя в обитаемых отделениях танков и бронемашин, исключая поражение экипажа вторичными осколками. В последнее время появились бронеавтомобили, корпус которых полностью состоит из композитов на основе стеклопластика и керамики.

    Отечественный опыт

    Основной причиной использования в бронировании неметаллических материалов является их относительно малая масса при повышенном уровне прочности, а также стойкость к коррозии. Так, керамика сочетает свойства малой плотности и высокой прочности, но при этом она достаточно хрупкая. А вот полимеры обладают как высокой прочностью, так и вязкостью, удобны для формообразования, недоступного для броневой стали. Особенно стоит отметить стеклопластики, на основе которых специалисты разных стран давно пытаются создать альтернативу металлической броне. Такие работы начались после Второй мировой войны в конце 1940-х годов. Тогда всерьёз рассматривалась возможность создания лёгких танков с пластиковой бронёй, так как она при меньшей массе теоретически давала возможность значительно увеличить баллистическую защиту и повысить противокумулятивную стойкость.

    Стеклопластиковый корпус для такнка ПТ-76

    В СССР опытные разработки противопульной и противоснарядной брони из пластических масс начались в 1957 году. Научно-исследовательские и опытно конструкторские работы велись большой группой организаций: ВНИИ-100, НИИ пластмасс, НИИ стекловолокна, НИИ-571, МФТИ. К 1960 году в филиале ВНИИ-100 была разработана конструкция бронекорпуса лёгкого танка ПТ-76 с использованием стеклопластика. По предварительным расчётам, предполагалось снизить массу корпуса бронеобъекта на 30% и даже больше, при сохранении снарядостойкости на уровне стальной брони такой же массы. При этом большая часть экономии массы достигалась за счёт силовых конструкционных деталей корпуса, то есть днища, крыши, рёбер жёсткости и т.п. Изготовленный макет корпуса, детали которого производились на заводе «Карболит» в Орехово-Зуево, прошёл испытания обстрелом, а также ходовые испытания путём буксировки.

    Хотя предполагавшаяся снарядостойкость и подтвердилась, по другим параметрам новый материал преимуществ не давал — ожидаемого значительного снижения радиолокационной и тепловой заметности не произошло. Кроме того, по технологической сложности производства, возможности ремонта в полевых условиях, техническим рискам стеклопластиковая броня уступала материалам из алюминиевых сплавов, которые для легких бронированных машин посчитали более предпочтительными. Разработку бронеконструкций, полностью состоящих из стеклопластика, вскоре свернули, так как полным ходом началось создание комбинированной брони для нового среднего танка (впоследствии принятого на вооружение Т-64). Тем не менее, стеклопластик стали активно использовать в гражданском автомобилестроении для создания колёсных вездеходов повышенной проходимости марки ЗиЛ.

    Так что в целом исследования в этой области продвигались успешно, ведь композитные материалы имели немало уникальных свойств. Одним из важных результатов этих работ стало появление комбинированной брони с керамическим лицевым слоем и подложкой из армированного пластика. Выяснилось, что такая защита обладает высокой стойкостью к воздействию бронебойных пуль, в то время как её масса в 2-3 раза меньше стальной брони аналогичной прочности. Такую комбинированную бронезащиту уже в 1960-х годах начали применять на боевых вертолётах для защиты экипажа и наиболее уязвимых агрегатов. Позднее аналогичную комбинированную защиту стали использовать в производстве бронированных кресел пилотов армейских вертолётов.

    Результаты, достигнутые в Российской Федерации в области разработок неметаллических броневых материалов, показаны в материалах, опубликованных специалистами ОАО «НИИ Стали», крупнейшим в России разработчиком и производителем комплексных систем защиты, среди них — Валерий Григорян (президент, директор по науке ОАО «НИИ Стали», доктор технических наук, профессор, академик РАРАН), Иван Беспалов (начальник отдела, кандидат технических наук), Алексей Карпов (ведущий научный сотрудник ОАО «НИИ Стали», кандидат технических наук).

    Испытания керамической бронепанели для усиления защиты БМД-4М

    Специалисты «НИИ Стали» пишут, что за последние годы в организации были разработаны защитные структуры 6а класса с поверхностной плотностью 36-38 килограммов на квадратный метр на основе карбида бора производства ВНИИЭФа (Саров) на подложке из высокомолекулярного полиэтилена. ОНПП «Технология» при участии ОАО «НИИ стали» удалось создать защитные структуры 6а класса с поверхностной плотностью 39-40 килограммов на квадратный метр на основе карбида кремния (тоже на подложке из сверхвысокомолекулярного полиэтилена — СВМПЭ).

    Эти структуры имеют неоспоримое преимущество по массе по сравнению с бронеструктурами на основе корунда (46-50 килограммов на квадратный метр) и стальными бронеэлементами, но обладают двумя недостатками: низкой живучестью и высокой стоимостью.

    Можно добиться увеличения живучести органокерамических бронеэлементов до одного выстрела на один квадратный дециметр за счет выполнения их наборными из небольших плиток. Пока в бронепанель с подложкой из СВМПЭ площадью пять-семь квадратных дециметров можно гарантировать один-два выстрела, но не более. Не случайно зарубежные стандарты пулестойкости предполагают проведение испытаний бронебойной винтовочной пулей только одним выстрелом в защитную структуру. Достижение живучести до трех выстрелов в квадратный дециметр остается одной из главных задач, которую стремятся решить ведущие российские разработчики.

    Высокую живучесть можно получить путем применения дискретного керамического слоя, то есть слоя, состоящего из небольших цилиндриков. Такие бронепанели изготавливает, например, фирма TenCate Advanced Armor и другие компании. При прочих равных условиях они примерно на десять процентов тяжелее панелей из плоской керамики.

    В качестве подложки под керамику применяются прессованные панели из высокомолекулярного полиэтилена (типа Dyneema или Spectra) как наиболее легкого энергоемкого материала. Однако он изготавливается только за рубежом. Следовало бы и в России наладить собственное производство волокон, а не только заниматься прессованием панелей из импортного сырья. Возможно применение и композитных материалов на основе отечественных арамидных тканей, но масса и стоимость их в значительной степени превышают аналогичные показатели полиэтиленовых панелей.

    Дальнейшее улучшение характеристик композитной брони на основе керамических бронеэлементов применительно к объектам БТВТ проводится по следующим основным направлениям.

    Повышение качества бронекерамики. Последние два-три года НИИ Стали тесно сотрудничает с производителями бронекерамики в России — ОАО «НЭВЗ-Союз», ЗАО «Алокс», ООО «Вириал» в плане отработки и улучшения качества бронекерамики. Совместными усилиями удалось значительно улучшить ее качество и практически довести до уровня западных образцов.

    Отработка рациональных конструктивных решений. Набор керамических плиток обладает особыми зонами вблизи их стыков, которые имеют пониженные баллистические характеристики. С целью выравнивания свойств панели разработана конструкция «профилированной» бронеплитки. Данные панели установлены на автомобиль «Каратель» и успешно прошли предварительные испытания. Кроме того, отработаны структуры на основе корунда с подложкой из СВМПЭ и арамидов с весом 45 килограмм-сил на квадратный метр для панели 6а класса. Однако применение таких панелей в объектах AT и БТВТ ограничено в связи с наличием дополнительных требований (например, стойкость при боковом подрыве взрывного устройства).

    Испытанная обстрелом кабина, защищенная комбинированной броней с керамическими плитками

    Для бронетехники типа БМП и БТР характерно повышенное огневое воздействие, так что предельная плотность поражений, которую может обеспечить керамическая панель, собранная по принципу «сплошного бронирования», может быть недостаточной. Решение данной проблемы возможно только при использовании дискретных керамических сборок из шестигранных либо цилиндрических элементов, соразмерных средству поражения. Дискретная компоновка обеспечивает максимальную живучесть композитной бронепанели, предельная плотность поражения которой приближается к аналогичному параметру металлических бронеконструкций.

    Однако весовые характеристики дискретных керамических бронекомпозиций с основой в виде алюминиевого или стального броневого листа на пять-десять процентов превышают аналогичные параметры керамических панелей сплошной компоновки. Преимуществом панелей из дискретной керамики является также отсутствие необходимости ее приклейки к подложке. Данные бронепанели установлены и испытаны на опытных образцах БРДМ-3 и БМД-4. В настоящее время такие панели применяются в рамках ОКР «Тайфун», «Бумеранг».

    Зарубежный опыт

    В 1965 году специалисты американской компании DuPont создали материал, получивший название «Кевлар». Он представлял собой арамидное синтетическое волокно, которое, по утверждению разработчиков, в пять раз прочнее стали при той же массе, но при этом обладающее гибкостью обычного волокна. «Кевлар» стал широко применяться как броневой материал в авиации и при создании средств индивидуальной защиты (бронежилеты, каски и т.п.). Помимо этого, «Кевлар» стали внедрять в систему защиты танков и других боевых бронированных машин в качестве подбоя для защиты от вторичного поражения экипажа осколками брони. Позднее аналогичный материал был создан и в СССР, правда, в бронетехнике он не применялся.

    Американская опытная ББМ CAV с корпусом из стеклопластика

    Тем временем появлялись более совершенные кумулятивные и кинетические средства поражения, а с ними росли требования к бронезащите техники, что увеличивало её вес. Снижение массы боевой техники без ущерба для защиты было практически невозможно. Но в 1980-х годах развитие технологий и новейшие разработки в области химической промышленности позволили вернуться к идее стеклопластиковой брони. Так, американская компания FMC, занимающаяся производством боевых машин, создала опытный образец башни для боевой машины пехоты M2 Bradley, защита которой представляла собой единую деталь из армированного стекловолокном композита (за исключением лобовой части). В 1989 году начались испытания БМП Bradley с бронекорпусом, в состав которого были включены две верхних детали и днище, состоящие из многослойных композитных плит, а облегчённая рама шасси была выполнена из алюминия. По результатам испытаний было выяснено, что по уровню баллистической защиты данная машина соответствует штатной БМП М2А1 при снижении массы корпуса на 27%.

    С 1994 года в США в рамках программы Advanced Technology Demonstrator (ATD) создавался опытный образец боевой бронированной машины, получившей название CAV (Composite Armored Vehicle). Её корпус должен был полностью состоять из комбинированной брони на основе керамики и стеклопластика с использованием новейших технологий, за счет чего планировалось снизить общую массу на 33% при уровне защищённости, эквивалентном броневой стали, и, соответственно, повысить подвижность. Основное предназначение машины CAV, разработку которой поручили компании United Defence, была наглядная демонстрация возможности использования композиционных материалов при изготовлении бронекорпусов перспективных БМП, БРМ и других боевых машин.

    В 1998 году был продемонстрирован опытный образец гусеничной машины CAV массой 19,6 т. Корпус был изготовлен из двух слоёв композиционных материалов: наружный из керамики на основе оксида алюминия, внутренний — из стеклопластика, армированного высокопрочным стекловолокном. В дополнение внутренняя поверхность корпуса имела противоосколочный подбой. Стеклопластиковое днище в целях повышения защиты от взрыва мин имело структуру с сотовым основанием. Ходовая часть машины закрывалась бортовыми экранами из двухслойного композита. Для размещения экипажа в носовой части предусматривалось изолированное боевое отделение, выполненное сварным способом из титановых листов и имеющее дополнительное бронирование из керамики (лоб) и стеклопластика (крыша) и противоосколочный подбой. Машина оснащалась дизельным двигателем мощностью 550 л.с. и гидромеханической трансмиссией, ее скорость достигала 64 км/ч, запас хода составлял 480 км. В качестве основного вооружения на корпусе была установлена поднимающаяся платформа кругового вращения с 25-мм автоматической пушкой М242 Bushmaster.

    Испытания опытного образца CAV включали исследования возможностей корпуса противостоять ударным нагрузкам (планировалось даже установить 105-мм танковую пушку и провести серию стрельб) и ходовые испытания с общим пробегом в несколько тысяч км. Всего до 2002 года программой предусматривалось израсходовать до 12 млн. долларов. Но работы так и не вышли из опытной стадии, хотя и наглядно продемонстрировали возможность применения композитов взамен классического бронирования. Поэтому разработки в этом направлении были продолжены в области совершенствования технологий создания сверхпрочных пластиков.

    Германия также не осталась в стороне от общей тенденции и с конца 1980-х гг. вела активные исследования в области неметаллических бронематериалов. В 1994 году в этой стране была принята на снабжение противопульная и противоснарядная композитная броня Mexas, разработанная компанией IBD Deisenroth Engineering на основе керамики. Она имеет модульную конструкцию и используется в качестве дополнительной навесной защиты для боевых бронированных машин, монтируется поверх основной брони. По заявлениям представителей фирмы, композитная броня Mexas эффективно защищает от бронебойных боеприпасов калибром до 14,5 мм. Впоследствии броневые модули Mexas стали широко использоваться для повышения защищенности основных танков и других боевых машин разных стран, в том числе танка «Леопард-2», боевых машин пехоты ASCOD и CV9035, бронетранспортёров Stryker, Piranha-IV, бронеавтомобилей «Динго» и «Феннек», а также самоходной артиллерийской установки PzH 2000.

    Одновременно с 1993 года в Великобритании шли работы по созданию прототипа машины ACAVP (Advanced Composite Armoured Vehicle Platform) с корпусом, полностью сделанным из композита на основе фибергласса и армированного стекловолокном пластика. Под общим руководством агентства DERA (Defence Evaluation and Research Agency) министерства обороны, специалисты компаний Qinetiq, Vickers Defence Systems, Vosper Thornycroft, Short Brothers и другие подрядчики в рамках единой опытно-конструкторской работы создавали композитный корпус типа «монокок». Целью разработок было создание прототипа гусеничной боевой бронированной машины с защитой, аналогичной металлической броне, но со значительно сниженной массой. В первую очередь это диктовалось необходимостью иметь полноценную боевую технику для сил быстрого реагирования, которая могла бы транспортироваться самым массовым военно-транспортным самолётом C-130 Hercules. В дополнение к этому новая технология позволяла снизить шумность машины, её тепловую и радиолокационную заметность, продлить срок службы за счет высокой стойкости к коррозии и в перспективе снизить стоимость производства. Для ускорения работ использовались узлы и агрегаты серийной британской БМП Warrior.

    Британская опытная ББМ ACAVP с корпусом из стеклопластика

    К 1999 году компания Vickers Defence Systems, осуществлявшая проектные работы и общую интеграцию всех подсистем опытного образца, представила прототип ACAVP на испытания. Масса машины составила около 24 тонн, двигатель мощностью 550 л.с., совмещённый с гидромеханической трансмиссией и усовершенствованной системой охлаждения, позволяет развивать скорость до 70 км/ч по шоссе и 40 км/ч по пересечённой местности. В качестве вооружения на машине установлена 30-мм автоматическая пушка, спаренная с 7,62-мм пулёмётом. При этом была использована стандартная башня от серийной БРМ Fox с бронированием из металла.

    В 2001 году испытания ACAVP успешно завершились и, по словам разработчика, продемонстрировали впечатляющие показатели защищённости и подвижности (в прессе было амбициозно заявлено, что англичане якобы «впервые в мире» создали композитную бронированную машину). Композитный корпус обеспечивает гарантированную защиту от бронебойных пуль калибра до 14,5 мм в боковую проекцию и от 30-мм снарядов в лобовую, а сам материал исключает вторичное поражение экипажа осколками при пробитии брони. Предусмотрено также дополнительное модульное бронирование для усиления защиты, которое крепится поверх основной брони и при транспортировке машины по воздуху может быстро демонтироваться. В общей сложности на испытаниях машина прошла 1800 км и при этом не было зафиксировано никаких серьёзных поломок, а корпус успешно выдержал все ударные и динамические нагрузки. Кроме того, сообщалось, что масса машины 24 тонны — это не окончательный итог, этот показатель можно снизить, установив более компактный силовой блок и гидропневматическую подвеску, а применение облегчённых гусеничных траков из резины может серьёзно снизить уровень шума.

    Несмотря на положительные результаты, прототип ACAVP оказался невостребованным, хотя руководство DERA и планировало продолжить исследования до 2005 года, а впоследствии создать перспективную БРМ с композитной бронёй и экипажем из двух человек. В конечном счёте программа была свёрнута, а дальнейшее проектирование перспективной разведывательной машины уже велось по проекту TRACER с использованием проверенных алюминиевых сплавов и стали.

    Тем не менее, работы по исследованию неметаллических броневых материалов для техники и индивидуальной защиты были продолжены. В некоторых странах появились собственные аналоги материала «Кевлар», такие как «Тварон» датской компании Teijin Aramid. Он представляет собой очень прочное и лёгкое параарамидное волокно, которое предполагается использовать в бронировании боевой техники и, по заявлению производителя, может снизить общую массу конструкции на 30-60% по сравнению с традиционными аналогами. Еще один материал, получивший название «Дайнема», производства компании DSM Dyneema является высокопрочным сверхвысокомолекулярным полиэтиленовым (СВМПЭ) волокном. Как утверждает изготовитель, СВМПЭ является самым прочным материалом в мире — в 15 раз прочнее стали (!) и на 40% прочнее арамидного волокна такой же массы. Его планируется использовать для производства бронежилетов, касок и в качестве бронирования лёгких боевых машин.

    Легкие бронемашины из пластика

    Учитывая накопленный опыт, зарубежными специалистами был сделан вывод, что разработка перспективных танков и бронетранспортёров, полностью оснащённых бронёй из пластика, всё же является довольно спорным и рискованным делом. Но новые материалы оказались востребованными при разработке более лёгкой колёсной техники на базе серийных автомобилей. Так, с декабря 2008 г. по май 2009 г. в США на полигоне в Неваде был испытан легкий бронеавтомобиль с корпусом, полностью состоящим из композиционных материалов. Машина, получившая обозначение ACMV (All Composite Military Vehicle), разработанная компанией TPI Composites, успешно прошла ресурсные и ходовые испытания, проехав в общей сложности 8 тысяч километров по асфальтовым и грунтовым дорогам, а также по пересечённой местности. Были запланированы испытания обстрелом и подрывом. Базой опытного бронеавтомобиля послужил известный HMMWV — «Хаммер». При создании всех конструкций его корпуса (в т.ч. балки рамы) использовались только композиционные материалы. За счёт этого компании TPI Composites удалось значительно снизить массу ACMV и, соответственно, увеличить его грузоподъёмность. В дополнение планируется на порядок продлить срок службы машины ввиду ожидаемой большей долговечности композитов по сравнению с металлом.

    Значительного прогресса в области использования композитов для легкой бронетехники достигли в Великобритании. В 2007 году на 3-й международной выставке оборонных систем и оборудования в Лондоне был продемонстрирован бронеавтомобиль Cav-Cat на базе среднетоннажного грузовика Iveco, оснащённый композитной бронёй CAMAC компании NP Aerospace. Помимо штатной брони была предусмотрена дополнительная защита бортов машины за счёт установки модульных бронепанелей и противокумулятивных решёток, также состоящих из композита. Комплексный подход в защите CavCat позволил значительно снизить воздействие на экипаж и десант взрывов мин, осколков и лёгкого пехотного противотанкового оружия.

    Американский опытный бронеавтомобиль ACMV с корпусом из стеклопластика

    Британская бронированая машина CfvCat с дополнительными противокомулятивными экранами

    Стоит отметить, что ранее компания NP Aerospace уже демонстрировала броню типа САМАС на лёгком бронеавтомобиле Landrover Snatch в составе бронекомплекта Cav100. Теперь же подобные комплекты Cav200 и Cav300 предлагаются для средних и тяжёлых колёсных машин. Изначально новый бронематериал создавался как альтернативная металлической композитная пуленепробиваемая броня с высоким классом защиты и общей прочностью конструкции при сравнительно низком весе. В его основу был положен прессованный многослойный композит, позволяющий формировать прочную поверхность и создавать корпус с минимумом стыков. По утверждению производителя, бронематериал CAMAC обеспечивает создание модульной конструкции типа «монокок» с оптимальной баллистической защитой и способностью противостоять сильным структурным нагрузкам.

    Но компания NP Aerospace пошла дальше и в настоящее время предлагает оснащать лёгкие боевые машины новой динамической и баллистической композитной защитой собственного производства, расширив свой вариант комплекса защиты путём создания навесных элементов EFPA и ACBA. Первый представляет собой начинённые взрывчатым веществом пластиковые блоки, устанавливаемые поверх основной брони, а второй — литые блоки композитной брони, также дополнительно устанавливаемые на корпус.

    Таким образом, легкие колёсные боевые бронированные машины с композитной бронезащитой, разрабатываемые для армии, уже не выглядели чем-то из ряда вон выходящим. Символической вехой стала победа промышленной группы Force Protection Europe Ltd в сентябре 2010 года в тендере на поставку в вооружённые силы Великобритании лёгкой бронированной патрульной машины LPPV (Light Protected Patrol Vehicle), получившей название Ocelot. Британское министерство обороны приняло решение заменить устаревшие армейские автомобили Land Rover Snatch как не оправдавшие себя в современных боевых условиях на территории Афганистана и Ирака, на перспективную машину с бронированием из неметаллических материалов. В качестве партнёров Force Protection Europe, имеющей большой опыт в производстве высокозащищенных автомобилей типа MRAP, была выбрана автостроительная компания Ricardo plc и «КинетиК», занимающаяся бронированием.

    Разработка Ocelot велась с конца 2008 года. Проектировщики бронеавтомобиля решили создать принципиально новую машину на основе оригинального конструкторского решения в виде универсальной модульной платформы, в отличие от других образцов, которые базируются на серийных коммерческих шасси. Помимо V-образной формы днища корпуса, повышающей защиту от мин за счёт рассеивания энергии взрыва, была разработана специальная подвесная бронированная коробчатая рама под названием «скейтборд», внутри которой были размещены карданный вал, коробка передач и дифференциалы. Новое техническое решение позволило перераспределить вес машины таким образом, чтобы центр тяжести находился максимально близко к земле. Подвеска колёс — торсионная с большим вертикальным ходом, приводы на все четыре колеса — раздельные, узлы передней и задней осей, а также колёса — взаимозаменяемые. Навесная кабина, в которой располагается экипаж, крепится к «скейтборду» шарнирно, что позволяет откидывать кабину в сторону для доступа к трансмиссии. Внутри находятся сиденья для двух членов экипажа и четырёх человек десанта. Последние сидят лицом друг к другу, их места отгорожены перегородками-пилонами, дополнительно усиливающими конструкцию корпуса. Для доступа внутрь кабины имеются двери с левой стороны и в задней части, а также два люка в крыше. Предусмотрено дополнительное пространство для монтажа различного оборудования, в зависимости от целевого назначения машины. Для электропитания приборов установлена вспомогательная дизельная силовая установка Steyr.

    Первый прототип машины Ocelot был изготовлен в 2009 году. Её масса составила 7,5 тонн, масса полезной нагрузки — 2 тонны, максимальная скорость движения по шоссе — 110 км/ч, запас хода — 600 км, радиус разворота — около 12 м. Преодолеваемые препятствия: -подъём до 45°, спуск до 40°, глубина брода до 0,8 м. Низкое расположение центра тяжести и широкая база между колёсами обеспечивает устойчивость к опрокидыванию. Проходимость повышена за счет использования увеличенных 20-дюймовых колёс. Большая часть подвесной кабины состоит из бронированных фигурных композитных бронепанелей, армированных стекловолокном. Имеются крепления для дополнительного комплекта бронезащиты. В конструкции предусмотрены обрезиненные участки для монтажа агрегатов, что позволяет снизить уровень шума, вибрации и повысить прочность изоляции по сравнению с обычным шасси. По заявлению разработчиков, базовая конструкция обеспечивает защиту экипажа от взрывов и огнестрельного оружия выше уровня стандарта STANAG IIB. Также утверждается, что полная замена двигателя и коробки передач может быть выполнена в полевых условиях в течение одного часа с помощью только штатных инструментов.

    Первые поставки бронеавтомобилей Ocelot начались в конце 2011 года, а к исходу 2012 года в вооружённые силы Великобритании поступило около 200 таких машин. Компания Force Protection Europe в дополнение к базовой патрульной модели LPPV разработала также варианты с модулем вооружения WMIK (Weapon Mounted Installation Kit) с экипажем из четырёх человек и грузовой вариант с кабиной на 2 человека. В настоящее время она принимает участие в тендере министерства обороны Австралии на поставку бронированных машин.

    Итак, создание новых неметаллических броневых материалов в последние годы идёт полным ходом. Возможно, не за горами то время, когда принятые на вооружение бронированные машины, не имеющие в своём корпусе ни одной металлической детали, станут обыденным делом. Особенную актуальность лёгкая, но прочная бронезащита приобретает сейчас, когда в разных уголках планеты вспыхивают вооружённые конфликты низкой интенсивности, проводятся многочисленные антитеррористические и миротворческие операции.