• Что можно приготовить из кальмаров: быстро и вкусно

    АЛФЁРОВ ЖОРЕС ИВАНОВИЧ

    (р. в 1930 г.)

    Знаменитый советский и российский ученый Жорес Иванович Алфёров родился 15 марта 1930 года в городе Витебске (тогда еще в Белорусской ССР).

    Его родители были коренными белорусами. Отец будущего ученого, Иван Карпович Алфёров, сменил множество профессий.

    Во время Первой мировой войны он воевал, был гусаром, унтер-офицером лейб-гвардии. За свою храбрость был представлен к награждению, став дважды Георгиевским кавалером.

    В сентябре 1917 года старший Алфёров вступил в партию большевиков, а спустя некоторое время перешел на хозяйственную работу. С 1935 года отец Жореса занимал различные руководящие должности на военных заводах СССР. Он работал директором завода, комбината, начальником треста. Из-за специфики работы отца семья часто переезжала с места на место. Маленькому Алфёрову довелось увидеть Сталинград, Новосибирск, Барнаул, Сясьстрой под Ленинградом, Туринск Свердловской области, полуразрушенный Минск.

    Мать мальчика, Анна Владимировна, работала в библиотеке, в отделе кадров, а большую часть времени была домохозяйкой.

    Родители будущего ученого были заядлыми коммунистами. Своего старшего сына они назвали Марксом (в честь Карла Маркса), а младший получил имя Жорес (в честь Жана Жореса, основателя французской социалистической партии, идеолога и основателя газеты «Юманите»).

    Детские воспоминания Жореса часто связаны с его старшим братом. Маркс помогал мальчику в учебе, никогда не давал его в обиду. После окончания школы и нескольких месяцев учебы в Уральском индустриальном институте он бросил все и ушел на фронт – защищать Родину. В возрасте 20 лет младший лейтенант Маркс Алфёров был убит.

    Начальное образования Жорес получил в Сясьстрое. 9 мая 1945 года отец мальчика получил назначение в Минск, куда вскоре переехала и семья. В Минске Жореса определили учиться в единственную не разрушенную в городе 42-ю среднюю школу, которую он окончил в 1948 году с золотой медалью.

    Учителем физики в 42-й школе был знаменитый Я. Б. Мельцерзон. Несмотря на отсутствие физического кабинета, преподавателю удалось привить любовь и интерес школьников к своему предмету. Заметив талантливого мальчика, Яков Борисович всячески помогал ему в учебе. После окончания школы учитель порекомендовал Алфёрову ехать в Ленинград и поступать в Ленинградский электротехнический институт им. В. И. Ленина (ЛЭТИ).

    На молодого Алфёрова физические уроки действовали магнетически. Особенно его заинтересовал рассказ учителя о работе катодного осциллографа и принципах радиолокации, так что мальчик после школы уже твердо знал, кем он хочет быть. Он поступил в ЛЭТИ на специальность «электровакуумная техника» факультета электронной техники (ФЭТ). В то время институт был одним из «пилотных» вузов в области отечественной электроники и радиотехники.

    На третьем курсе способного студента взяли на работу в вакуумную лабораторию профессора Б. П. Козырева, где молодой Алфёров начал свою первую экспериментальную работу под руководством Натальи Николаевны Созиной. Позже Алфёров очень тепло отзывался о своем первом научном руководителе. Незадолго до прихода в институт Жореса она сама защитила диссертационную работу по исследованию полупроводниковых фотоприемников в инфракрасной области спектра и всячески помогала в исследованиях Жореса Алфёрова.

    Атмосфера в лаборатории, процесс исследования очень нравились студенту, и он решил стать профессиональным физиком. Особенно Жореса заинтересовало изучение полупроводников. Под руководством Созиной Алфёров написал дипломную работу, посвященную получению пленок и исследованию фотопроводимости теллурида висмута.

    В 1952 году Алфёров окончил ЛЭТИ и решил продолжить научные исследования в заинтересовавшей его области физики. При распределении выпускников на работу Алфёрову улыбнулась удача: он отказался остаться в ЛЭТИ и был принят в Физико-технический институт им. А. Ф. Иоффе (ЛФТИ).

    В то время настольной книгой молодого ученого была монография Абрама Федоровича Иоффе «Основные представления современной физики». Распределение в Физтех было одним из самых счастливых моментов в жизни знаменитого ученого, определившее его дальнейший путь в науке.

    К моменту прихода молодого специалиста в институт светило советской науки, директор ЛФТИ Абрам Федорович Иоффе уже ушел со своего поста. «Под Иоффе» была образована лаборатория полупроводников при Президиуме АН СССР, куда выдающийся ученый пристроил почти всех лучших физиков – исследователей полупроводниковой области. Молодому ученому повезло во второй раз – он был откомандирован в эту лабораторию.

    Великий А. Ф. Иоффе был пионером полупроводниковой науки в целом и основоположником отечественных разработок в этой области. Именно благодаря ему Физтех стал центром полупроводниковой физики.

    В 1930-е годы в Физтехе проводились различные исследования, ставшие фундаментальными основами новой области физики. Среди таких работ следует особенно выделить совместный труд Иоффе и Френкеля 1931 года, в котором ученые описали туннельный эффект в полупроводниках, а также работу Жузе и Курчатова по собственной и примесной проводимости полупроводников.

    Однако после серии успешных работ Иоффе заинтересовался ядерной физикой, другие гениальные физики занимались иными близкими им областями науки, так что развитие физики полупроводников несколько замедлилось. Кто знает, как бы развивались дальше дела, если бы в 1947 году американским ученым не удалось добиться транзисторного эффекта на точечном транзисторе. В 1949 году уже был изготовлен первый транзистор с p-n -переходами.

    В начале 1950-х годов советское правительство поставило институту конкретную задачу – разработать современные полупроводниковые приборы, которые можно было бы использовать в отечественной промышленности. Лаборатория полупроводников должна была получить монокристаллы чистого германия и на их основе создать плоскостные диоды и триоды. Способ массового промышленного производства транзисторов американские ученые предложили в ноябре 1952 года, теперь очередь была за советскими учеными.

    Молодой ученый оказался в самом эпицентре научных разработок. Ему довелось участвовать в создании первых отечественных транзисторов, фотодиодов, мощных германиевых выпрямителей и т. д.

    Задание советского правительства лаборатория Тучкевича выполнила на «отлично». Жорес Алфёров принимал активное участие в разработках. Уже 5 марта 1953 года он сделал первый транзистор, который справлялся с нагрузками и хорошо показал себя в работе. В 1959 году за комплекс проведенных работ Жорес Алфёров получил правительственную награду.

    В 1960 году вместе с другими учеными Жорес отправился на международную конференцию по физике полупроводников в Прагу. Среди знаменитых ученых там присутствовали Абрам Иоффе и Джон Бардин, представитель знаменитой троицы Бардин – Шокли – Браттейн, создавшей в 1947 году первый транзистор. После посещения конференции Алфёров еще больше заинтересовался научными исследованиями.

    В следующем году Жорес Алфёров защитил свою кандидатскую работу, посвященную созданию и исследованию мощных германиевых и частично кремниевых выпрямителей, и был удостоен степени кандидата технических наук. Фактически эта работа подвела итог его десятилетних исследований в данной области науки.

    Особенных раздумий, какую область физики выбрать для дальнейших исследований, у него не было – он уже серьезно работал над получением полупроводниковых гетероструктур и исследованием гетеропереходов. Алфёров понимал, что если ему удастся создать совершенную структуру – это будет настоящий скачок в физике полупроводников.

    В то время сформировалась отечественная силовая полупроводниковая электроника. Долгое время ученым не удавалось разработать приборы, основанные на гетеропереходах, из-за трудности создания перехода, близкого к идеальному.

    Алфёров показал, что в таких разновидностях p-n -переходов, как р-i-n, р-n-n + в полупроводниковых гомоструктурах, при рабочих плотностях тока, ток в пропускном направлении определяется рекомбинацией в сильно легированных р и n(n +) областях структур. При этом средняя i(n) область гомоструктуры не является главной.

    При работе над полупроводниковым лазером молодой ученый предложил использовать преимущества двойной гетероструктуры типа p-i-n (р-n-n +, n-p-p +) . Заявка на авторское свидетельство Алфёрова была засекречена, гриф секретности был снят только после того, как американский ученый Кремер опубликовал подобные выводы.

    В возрасте 30 лет Алфёров уже был одним из ведущих специалистов в области полупроводниковой физики в Советском Союзе. В 1964 году его пригласили принять участие в международной конференции по физике полупроводников, проводившейся в Париже.

    Через два года Жорес Алфёров сформулировал общие принципы управления электронными и световыми потоками в гетероструктурах.

    В 1967 году Алфёров был избран заведующим лабораторией ЛФТИ. Работа над исследованиями гетероструктур шла полным ходом. Советские ученые пришли к выводу, что реализовать основные преимущества гетероструктуры возможно лишь после получения гетероструктуры типа Alx Ga1-x As.

    В 1968 году стало ясно, что не одни советские физики работают над этим исследованием гетероструктур. Оказалось, что Алфёров и его команда всего лишь на месяц опередили исследователей из лаборатории IBM в своем открытии гетероструктуры типа Alx Ga1-x As. Кроме IBM в исследовательской гонке приняли участие такие монстры электроники и полупроводниковой физики, как компании Bell Telephone и RCA.

    В лаборатории Н. А. Горюновой удалось подобрать новый вариант гетероструктуры – тройное соединение AlGaAs, что позволило определить популярную на сегодня в электронном мире гетеропару GaAs/AlGaAs.

    К концу 1969 года советские ученые во главе с Алфёровым реализовали практически все возможные идеи управления электронными и световыми потоками в классических гетероструктурах на основе системы арсенид галлия – арсенид алюминия.

    Кроме создания гетероструктуры, близкой по своим свойствам к идеальной модели, группа ученых под руководством Алфёрова создала первый в мире полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре. Конкуренты из Bell Telephone и RCA предложили лишь более слабые варианты, базирующиеся на использовании в лазерах одиночной гетероструктуры p AlGaAs-p GaAs.

    В августе 1969 года Алфёров совершил первую свою поездку в США на Международную конференцию по люминесценции в Ньюарке, штат Делавер. Ученый не отказал себе в удовольствии и выступил с докладом, в котором упомянул характеристики созданных лазеров на основе AlGaAs. Эффект от доклада Алфёрова превысил все ожидания – американцы намного отстали в своих исследованиях, и только специалисты из Bell Telephone спустя несколько месяцев повторили успех советских ученых.

    На основе разработанной в 1970-х годах Алфёровым технологии высокоэффективных и радиационностойких солнечных элементов на основе гетероструктур AlGaAs/GaAs в Советском Союзе впервые в мире было организовано массовое производство гетероструктурных солнечных элементов для космических батарей. Когда подобные работы опубликовали американские ученые, советские батареи уже много лет использовались для различных целей. В частности, одна из таких батарей была установлена в 1986 году на космической станции «Мир». В течение многих лет эксплуатации она работала без существенного снижения мощности.

    В 1970 году на основе идеальных переходов в многокомпонентных соединениях InGaAsP (предложенных Алфёровым) были сконструированы полупроводниковые лазеры, использующиеся, в частности, как источники излучения в волоконно-оптических линиях связи повышенной дальности.

    В том же 1970 году Жорес Иванович Алфёров успешно защитил свою докторскую диссертацию, в которой обобщил исследования гетеропереходов в полупроводниках, преимущества использования гетероструктур в лазерах, солнечных батареях, транзисторах и т. д. За эту работу ученому была присуждена степень доктора физико-математических наук.

    За небольшой срок Жорес Алфёров добился поистине феноменальных результатов. Его работы привели к бурному развитию волоконно-оптических систем связи. В следующем году ученому была присуждена первая международная награда – золотая медаль Баллантайна Франклиновского института в США (Филадельфия), которую в мире науки называют «малой Нобелевской премией». К 2001 году кроме Алфёрова аналогичной медалью были награждены только три советских физика – П. Капица, Н. Боголюбов и А. Сахаров.

    В 1972 году ученый вместе со своими учениками-коллегами был удостоен Ленинской премии. В этом же году Жорес Иванович стал профессором Л ЭТИ, а в следующем – заведующим базовой кафедрой оптоэлектроники (ЭО) на факультете электронной техники ФТИ. В 1988 году Ж. И. Алфёров организовал в Санкт-Петербургском политехническом институте физико-технический факультет и стал его деканом.

    Работы Алфёрова 90-х годов XX века были посвящены исследованиям свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

    10 октября 2000 года Нобелевский комитет по физике присудил Нобелевскую премию 2000 года Жоресу Ивановичу Алфёрову, Херберту Крёмеру и Джеку Килби за «их базовые работы в области информационных и коммуникационных систем». Конкретно Алфёров и Крёмер получили премию «за разработку полупроводниковых гетероструктур, которые используются в сверхбыстрых микроэлектронных компонентах и оптоволоконной связи».

    Своими работами все три лауреата значительно ускорили развитие современной техники, в частности Алфёров и Крёмер открыли и разработали быстрые и надежные опто– и микроэлектронные компоненты, которые сегодня используются в самых различных областях.

    Денежную премию в 1 млн долларов ученые разделили между собой в таких пропорциях: Джек Килби за свои работы в области интегральных схем получил половину премии, а другая половина была поровну разделена между Алфёровым и Крёмером.

    В своей презентационной речи, произнесенной 10 декабря 2000 года, профессор Шведской королевской академии наук Торд Клесон проанализировал главные достижения трех великих ученых. Свою нобелевскую лекцию Алфёров прочитал 8 декабря 2000 года в Стокгольмском университете на отличном английском языке и без конспекта.

    В 1967 году Жорес Алфёров женился на Тамаре Георгиевне Дарской, дочери известного актера. Его жена некоторое время работала под руководством академика В. П. Глушко в Москве. Влюбленные люди около полугода летали друг к другу из Москвы в Ленинград и обратно, пока Тамара не согласилась переехать в Ленинград.

    В свободное от науки время ученый интересуется историей Второй мировой войны.

    Уже в довольно позднем возрасте Алфёров начал свою карьеру политика. В 1989 году он был избран народным депутатом СССР, входил в Межрегиональную депутатскую группу. После развала Союза он не забросил свою политическую деятельность.

    Осенью 1995 года знаменитый ученый был включен в качестве кандидата в общефедеральный список избирательного объединения «Всероссийское общественно-политическое движение “Наш дом – Россия”». По результатам голосования по общефедеральному округу он был избран депутатом российской Государственной думы второго созыва (с 1995 года), а через некоторое время стал членом комитета по образованию и науке (подкомитет по науке).

    В 1997 году Алфёров был включен в состав Научного совета Совета безопасности Российской Федерации.

    В 1999 году Жорес Иванович был избран депутатом Государственной думы РФ третьего созыва. Ученый был членом фракции КПРФ, наследницы КПСС, в которой Алфёров состоял с 1965 года по август 1991 года. Кроме того, ученый был членом бюро Ленинградского обкома КПСС в 1988–1990 годах, делегатом XXVII съезда КПСС.

    В настоящее время Алфёров по-прежнему заядлый коммунист и атеист.

    Из-под пера Алфёрова вышло более 350 научных статей, три фундаментальные научные монографии. Он имеет более 100 авторских свидетельств на изобретения. Ученый является главным редактором «Журнала технической физики».

    В 1972 году Алфёров был избран членом-корреспондентом Академии наук СССР, в 1979 году – академиком, в 1990 году он стал вице-президентом АН СССР, в 1991 году – академиком Российской академии наук (РАН) и ныне является ее вице-президентом.

    Параллельно Алфёров занимает должности председателя президиума Санкт-Петербургского научного центра РАН (с 1989 года), директора Центра физики наногетероструктур, председателя Международного фонда им. М. В. Ломоносова для возрождения и развития фундаментальных исследований в области естественных и гуманитарных наук, члена бюро отделения физических наук РАН, члена секции общей физики и астрономии отделения физических наук РАН, директора физико-технического института РАН (с 1987 года).

    На всех своих должностях Алфёров занимает активную позицию. Его рабочий график расписан на месяц вперед.

    Кроме Нобелевской премии ученый был награжден различными медалями и премиями, среди которых стоит выделить золотую медаль им. Стюарта Баллантайна Франклиновского института (США, 1971), премию «Хьюлетт-Паккард» Европейского физического общества, Международную премию симпозиума по арсениду галлия (1987), золотую медаль X. Велькера (1987), премию им. А. Ф. Иоффе РАН (1996), Общенациональную неправительственную Демидовскую премию РФ (1999), премию Киото за передовые достижения в области электроники (2001).

    Также ученый был удостоен Ленинской премии (1972), Государственной премии СССР (1984) и Государственной премии Российской Федерации (2002).

    Жорес Алфёров награжден многими медалями и орденами СССР и Российской Федерации, среди которых орден «Знак Почета» (1958), орден Трудового Красного Знамени (1975), орден Октябрьской Революции (1980), орден Ленина (1986), медаль «За заслуги перед Отечеством» 3-й степени.

    Нобелевский лауреат является активным и почетным членом различных научных обществ, академий и университетов, среди которых Национальная инженерная академии США (1990), Национальная академия наук США (1990), Академия науки и технологии Кореи (1995), Франклиновский институт (1971), Академия наук Республики Беларусь (1995), Гаванский университет (1987), Оптическое общество США (1997), Санкт-Петербургский гуманитарный университет профсоюзов (1998).

    В 2005 году на территории Санкт-Петербургского гуманитарного университета профсоюзов был установлен бронзовый бюст Жореса Алфёрова. Прижизненное открытие бюста было приурочено к 75-летнему юбилею ученого.

    Знаменитый ученый является учредителем Фонда поддержки образования и науки для поддержки талантливой учащейся молодежи, содействия ее профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Алфёров первым сделал вклад в Фонд, использовав часть средств своей Нобелевской премии.

    В своей автобиографии, подготовленной для нобелевского сайта, ученый вспоминает прекрасную книгу Каверина «Два капитана», которую он прочитал еще 10-летним мальчиком. С того времени он всю жизнь следует жизненным принципам одного из главных героев книги Сани Григорьева: «Бороться и искать, найти и не сдаваться».

    Данный текст является ознакомительным фрагментом. Из книги Скандалы советской эпохи автора Раззаков Федор

    1930 «Земля» не для бедного (Александр Довженко) Классик советского и мирового кинематографа Александр Довженко на протяжении своего долгого творческого пути (а он проработал в кино более 30 лет) неоднократно подвергался критике на страницах прессы. Один из первых громких

    Из книги 1991: измена Родине. Кремль против СССР автора Сирин Лев

    Жорес Алферов Алферов Жорес Иванович – лауреат Нобелевской премии по физике 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто– и микроэлектронных компонентов. Родился 15 марта 1930 г. в Витебске. Академик РАН и депутат Госдумы. – Сегодня

    Из книги Французская волчица - королева Англии. Изабелла автора Уир Элисон

    1930 Грей: Scalacronica.

    Из книги Матрица Скалигера автора Лопатин Вячеслав Алексеевич

    Фёдор Иванович? Иван Иванович Молодой 1557 Рождение у Ивана IV сына Федора 1458 Рождение у Ивана III сына Ивана 99 1584 Федор становится великим князем Московским 1485 Иван становится великим князем Тверским 99 1598 Смерть Фёдора 1490 Смерть Ивана 108 Иван Иванович умер 7 марта, а Федор

    Из книги Тайны политических убийств автора Утченко Сергей Львович

    Дуэль Луи Барту - Жан Жорес Операция «Тевтонский меч» была задумана и детально разработана в Берлине. Ее непосредственными организаторами были Гитлер и Геринг. А жертвой был избран министр иностранных дел Франции Луи Барту. Его имя тесно связано с историей французской

    Из книги Право на репрессии: Внесудебные полномочия органов государственной безопасности (1918-1953) автора Мозохин Олег Борисович

    1930 год Движение обвиняемых, привлеченных по следственным делам Решения судебных и следственных органовРезультаты следственной работы 118704Перечислено за органами НКЮ и следственными органами 208069Осуждены органами ОГПУ, из них:Коллегией ОГПУ 10212особым совещанием при

    Из книги Статистика репрессивной деятельности органов безопасности СССР на период с 1921 по1940 гг. автора Мозохин Олег Борисович

    1930-й год Движение обвиняемых, привлеченных по следственным делам ОСТАВАЛОСЬ арестованных на 1 января 1930 г. 34 959 ПРИБЫЛО арестованных за год 378 539 из них: по ОГПУ–Центру 24 881 по территориальным органам 331 544 по транспортным органам 22 114 СОСТОЯЛО в отчетном году 413

    Из книги Политические портреты. Леонид Брежнев, Юрий Андропов автора Медведев Рой Александрович

    КГБ и братья Жорес и Рой Медведевы Работа Жореса Медведева «Биологическая наука и культ личности. Из истории агробиологической дискуссии в СССР» была, вероятно, первой большой научно-публицистической работой, которая уже весной 1962 года разошлась в списках почти по всей

    Из книги Хрущевская «оттепель» и общественные настроения в СССР в 1953-1964 гг. автора Аксютин Юрий Васильевич

    Из книги Троцкий против Сталина. Эмигрантский архив Л. Д. Троцкого. 1929–1932 автора Фельштинский Юрий Георгиевич

    1930 Письмо австрийским коммунистам Копия: Джозефу ФреюУважаемый товарищ!Вы спрашиваете совета относительно линии поведения революционных элементов австрийской социал-демократии. К сожалению, я слишком мало для этого знаю состав, цели и методы вашей группы (только на

    Из книги Историческое описание одежды и вооружения российских войск. Том 14 автора Висковатов Александр Васильевич

    Из книги Скрытый Тибет. История независимости и оккупации автора Кузьмин Сергей Львович

    1930 Намсараева, 2003.

    Из книги Лица века автора Кожемяко Виктор Стефанович

    Нобелевский лауреат – с коммунистами ВЫДАЮЩИЙСЯ ФИЗИК, ЛАУРЕАТ НОБЕЛЕВСКОЙ ПРЕМИИ АКАДЕМИК ЖОРЕС АЛФЁРОВ Наверное, даже среди самых занятых людей Жорес Иванович Алфёров относится к наиболее занятым. И трудно сказать, где его главное рабочее место – в Ленинграде или в

    Из книги Сталинский террор в Сибири. 1928-1941 автора Папков Сергей Андреевич

    1. 1930 год С точки зрения ленинизма колхозы, как и Советы, взятые как форма организации, есть оружие, и только оружие. Сталин К началу 1930 года антикулацкая атмосфера в стране была накалена до предела. Газеты переполнялись угрожающими призывами и статьями по адресу кулаков,

    Из книги С.М. КИРOB Избранные статьи и речи 1916 - 1934 автора Д. Чугаева и Л. Петерсон.

    Из книги Всемирная история в изречениях и цитатах автора Душенко Константин Васильевич

    Родился 15.03.1930, г. Витебск

    Академик Российской Академии наук, избран 15 марта 1979 г. Вице-президент АН СССР (затем РАН) с 25 апреля 1990 г.

    Лауреат Ленинской премии (1972) и Государственной премии СССР (1984). Награжден Золотой медалью Баллантайна (1971) Франклиновского института (США), Хьюлет-Паккардовской премией Европейского физического общества (1972), медалью Х. Велькера (1987), премией А.П. Карпинского и премией А.Ф. Иоффе Российской Академии наук, Общенациональной неправительственной Демидовской премией РФ (1999), премией Киото за передовые достижения в области электроники (2001), Государственной премией РФ (2002), премией «Глобальная энергия» (2005).

    Лауреат Нобелевской премии по физике 2000 г. «за развитие полупроводниковых гетероструктур для высокоскоростной и оптоэлектроники».

    Почетный доктор многих университетов и почетный член многих иностранных академий, в том числе Польской академии наук, Национальной академии наук США и Национальной инженерной академии наук США, Национальных академий наук Италии, Китая, Кубы и др.

    Председатель Президиума Санкт-Петербургского научного центра.

    Научный руководитель физико-технического института им. А.Ф. Иоффе (в 1987–2003 гг. - директор).

    Председатель-организатор Санкт-Петербургского Физико-технологического Научно-образовательного центра РАН. Декан физико-технического факультета Санкт-Петербургского Государственного технического университета.

    Ректор-организатор Академического физико-технологического университета (АФТУ РАН) - первого высшего учебного заведения, входящего в систему РАН (2002).

    Инициатор создания премии «Глобальная энергия» (учреждена в 2002 г.).

    Учредитель (2001) и Президент Фонда поддержки образования и науки (Алферовского фонда).

    Депутат Государственной Думы, член Комитета ГД по образованию и науке.

    В лице Жореса Алферова наука получила поистине неоценимого человека, что доказывают его многочисленные награды и статусы. В настоящее время он имеет Нобелевскую премию, государственные награды Советского Союза и России, состоит в числе академиков РАН и является вице-президентом этой организации. Ранее ему была присуждена Ленинская премия. Алферов получил статус почетного гражданина многих населенных пунктов, включая российские, белорусские и даже город в Венесуэле. Он состоит в Госдуме, занимается наукой и вопросами образования.

    Чем известен?

    Академик Жорес Алферов, как говорят некоторые, совершил революцию в современной науке. Всего под его авторством вышло более полутысячи научных работ, порядка полусотни разработок, открытий, признанных прорывом в своей области. Благодаря ему стала возможна новая электроника - Алферов буквально создал принципы науки с нуля. Во многом именно благодаря сделанным им открытиям мы имеем ту телефонию, сотовую связь, спутники, которыми располагает человечество. Открытия Алферова обеспечили нас оптоволокном и светодиодами. Фотоника, скоростная электроника, энергетика, связанная с солнечным светом, эффективные методы экономичного расходования энергии - все это обусловлено использованием разработок Алферова.

    Как известно из биографии Жореса Алферова, этот человек внес уникальный вклад в развитие цивилизации, и его достижения применяются всеми и каждым - от считывающих штрих-коды аппаратов в магазине до сложнейших устройств спутниковой связи. Перечислить все объекты, построенные с использованием наработок этого физика, просто невозможно. Можно смело говорить, что преимущественный процент жителей нашей планеты в той или иной степени пользуется открытиями Алферова. Всякий мобильный оснащен полупроводниками, которые он разработал. Без лазера, над которым он трудился, не существовало бы проигрывателей компакт-дисков, компьютеры не могли бы считывать информацию через дисковод.

    Такой многосторонний

    Как рассказывает биография Жореса Алферова, работы этого человека были признаны на мировом уровне, стали исключительно известными, как и он сам. Многочисленные монографии, учебники написаны с применением базовых принципов и достижений ученого. Сегодня он продолжает активно трудится, работает в сфере науки, исследовательских задач, преподает, ведет активную просветительскую деятельность. Одна из целей, выбранных себе Алферовым, - работа в направлении увеличения престижа российской физики.

    Как все начиналось

    Хотя для всех гениальный физик - русский, национальность Жореса Алферова - белорус. Он увидел свет в белорусском городе Витебске в 30-м году, весной - 15 марта. Отца звали Иваном, мать - Анной. Позднее физик женится на Тамаре, у него появится двое детей. Сын председательствует в управленческой структуре фонда, названного именем отца, а дочь работает в отвечающей за имущество администрации СПб НЦ РАН в должности главного специалиста.

    Отец ученого был из Чашников, его мать - из Крайска. Будучи восемнадцатилетним, Иван впервые прибыл в Петербург в 1912, устроился грузчиком, трудился фабричным работником, затем перешел на завод. В период Первой всемирной войны получил статус унтер-офицера, в 17-м присоединился к большевикам, до самой смерти не отступал от идеалов своих юных лет. Потом, когда произойдут изменения в государстве, Жорес Алферов скажет, что его родителям посчастливилось не увидеть 94-й. Известно, что отец физика в период гражданской войны контактировал с Лениным, Троцким. После 35-го ему довелось быть заводским управленцем, начальствовать над трестом. Он зарекомендовал себя порядочным мужчиной, не терпящим пустого осуждения и клеветы. В жены он выбрал себе разумную, спокойную, мудрую женщину. Качества ее характера во многом передадутся сыну. Анна трудилась в библиотеке и тоже искренне верила в идеалы революции. Это заметно, между прочим, по имени ученого: в тот период было модно выбирать для детей имена, связанные с революцией, и Алферовы назвали первого ребенком Марксом, а второму дали имя в честь Жана Жореса, прославившегося своими деяниями в период революции во Франции.

    Жизнь идет своим чередом

    В те годы Жорес Алферов, как и его брат Маркс, были объектами пристального внимания окружающих. От детей директора ждали показательного поведения, лучших оценок, безупречной общественной активности. В 41-м Маркс окончил школу, поступил в вуз, спустя считанные недели отправился на фронт, где был тяжело ранен. В 43-м три дня удалось провести рядом с близкими - после госпиталя юноша решил вновь вернуться на защиту отечества. До конца войны дожить ему не посчастливилось, молодой человек погиб в Корсунь-Шевченковской операции. В 1956 г. младший брат отправится на поиски могилы, встретит в украинской столице Захарченю, с которым затем сдружится. Они отправятся на поиски вместе, найдут деревушку Хильки, найдут братскую могилу, заросшую сорняками с редкими вкраплениями незабудок и ноготков.

    Взирающий со сделанных в последние годы фото Жорес Алферов - уверенный, опытный, мудрый человек. Эти качества, во многом полученные от матери, он взращивал в себе на протяжении всей своей непростой жизни. Известно, что в Минске молодой человек обучался в единственной школе, которая тогда работала. Ему повезло учиться у Мельцерзона. Специального кабинета для занятия физикой не было, и все же учитель приложил все силы к тому, чтобы каждый из его слушателей полюбил предмет. Хотя в целом, как потом будет вспоминать нобелевский лауреат, класс был неспокойным, на уроках физика все сидели, затаив дыхание.

    Первое знакомство - первая любовь

    Уже тогда, получая свое первое образование, Жорес Алферов смог познать и понять чудеса физики. Будучи школьником, от учителя он узнал, как работает осциллограф на катодах, получил общие представления о радиолокационных принципах и определил для себя будущий жизненный путь - он понял, что свяжет его именно с физикой. Было решено отправиться поступать в ЛЭТИ. Как он потом признает, юноше повезло с научным руководителем. Будучи третьекурсником, он выбрал для себя вакуумную лабораторию, начал экспериментировать под контролем Созиной, не так давно успешно защитившей диссертацию, посвященную инфракрасным полупроводниковым локаторам. Именно тогда он тесно познакомился с проводниками, которые вскоре станут центром и основным делом всей его научной карьеры.

    Как вспоминает сейчас Жорес Алферов, первой прочитанной им физической монографией была «Электропроводность полупроводников». Издание было создано в период, когда Ленинград оккупировали немецкие войска. Распределение в 1952 г., начинавшееся с мечты о Физтехе, которым руководил Иоффе, дало ему новые шансы. Вакансий было три, на одну из них выбрали перспективного молодого человека. Потом он скажет, что это распределение во многом определило его будущее, а вместе с тем - будущее нашей цивилизации. Правда, в это время молодой Жорес еще не знал, что всего лишь за пару месяцев до его прихода Иоффе заставили уйти из учебного заведения, которым он руководил вот уже три десятилетия.

    Развитие науки

    Жорес Алферов всю жизнь ярко помнит свой первый день в вузе мечты. Это был предпоследний январский день 53-го. В качестве научного руководителя ему достался Тучкевич. Группа ученых, в которую попал Алферов, должна была разработать диоды из германия, транзисторы, причем сделать это полностью самостоятельно, не прибегая к иностранным наработкам. В том году институт был довольно мал, Жоресу выдали пропуск под номером 429 - именно столько человек работало здесь. Так сложилось, что многие как раз незадолго до этого разъехались. Кто-то устроился в центры, посвященные атомной энергетике, кто-то уехал непосредственно к Курчатову. Алферов потом будет часто вспоминать первый семинар, на который он попал на новом месте. Он выслушал доклад Гросса, его потрясло нахождение в одной аудитории с людьми, открывающими что-то новое в области, с которой он едва начал знакомиться ближе. Заполняемый тогда лабораторный журнал, в который 5 марта был вписан факт удачно сконструированного p-n-p-транзистора, Алферов и по сей день хранит как важный артефакт.

    Как говорят современные ученые, остается лишь удивляться тому, как Жорес Алферов и его немногочисленные коллеги, преимущественно столь же молодые, как и он, пусть и руководимые опытным Тучкевичем, смогли достичь таких значимых достижений в короткие сроки. Всего за несколько месяцев были заложены базы транзисторной электроники, сформирован фундамент методологии, технологии в этой области.

    Новые времена - новые цели

    Коллектив, в котором работал Жорес Алферов, постепенно становился все многочисленнее, вскоре удалось разработать силовые выпрямители - первые на территории СССР, батареи из кремния, улавливающие солнечную энергию, а также изучены особенности активности кремниевых, германиевых примесей. В 1958 г. поступила просьба: необходимо было создать полупроводники для обеспечения работы подлодки. Такие условия требовали принципиально отличного от уже известных решения. Алферов получил личный звонок от Устинова, после чего на пару месяцев буквально переехал в лабораторию, чтобы не тратить время и не отвлекаться от работы на бытовые мелочи. Задачу решили в кратчайшие сроки, в октябре того же года подводная лодка была оснащена всем необходимым. За работу научный сотрудник получил орден, который и сегодня считает одной из ценнейших наград за свою жизнь.

    1961 г. был отмечен защитой кандидатской, в которой Жорес Алферов исследовал выпрямители из германия, кремния. Работа стала фундаментом полупроводниковой советской электроники. Если первое время он был одним из немногих ученых, придерживавшихся мнения, что будущее за гетероструктурами, к 1968 г. появились сильные американские конкуренты.

    Жизнь: любовь не только к физике

    В 1967 г. удалось получить направление в командировку в Англию. Основной задачей было обсудить физическую теорию, которую английские физики того времени считали бесперспективной. Одновременно молодой физик приобрел свадебные подарки: уже тогда личная жизнь Жореса Алферова позволяла предположить стабильное будущее. Как только он вернулся домой, сыграли свадьбу. Женой ученый выбрал дочь актера Дарского. Потом он скажет, что в девушке невероятно сочетались красота, ум и душевность. Тамара работала в Химках, на предприятии, занимавшемся в сфере освоения космоса. Заработная плата Жореса была достаточно велика, чтобы раз в неделю летать к жене, а спустя полгода женщина перебралась в Ленинград.

    Пока семья Жореса Алферова была рядом, его группа работала над идеями, связанными с гетероструктурами. Сложилось так, что за период 68-69 гг. удалось реализовать большинство перспективных идей контроля потоков света и электронов. Качества, указывающие на преимущества гетероструктур, стали очевидны даже для тех, кто сомневался. Одним из основных достижений было признано формирование лазера на сдвоенной гетероструктуре, функционирующего при комнатной температуре. Фундаментом установки стала структура, разработанная Алферовым в 1963-м.

    Новые открытия и новые успехи

    1969-й стал годом проведения Ньюаркской конференции, посвященной люминесценции. Доклад Алферова по эффекту можно было сравнить с внезапным взрывом. 70-71-й гг. были отмечены полугодовым пребыванием на территории Америки: Жорес трудился в Иллинойском университете в команде с Холоньяком, с которым тогда же близко сдружился. В 1971 г. ученый впервые получил награду междугородного уровня - имени Баллантайна. Институт, от имени которого была вручена эта медаль, ранее отметил ею Капице, Сахарова, и оказаться в списке медалистов для Алферова стало не просто комплиментом и признанием его заслуг, но действительно большой честью.

    В 1970 советские ученые собрали первые солнечные батареи, применимые для космических установок, ориентируясь на работы Алферова. Технологии передали предприятию «Квант», применили для потокового производства, и вскоре удалось выпустить достаточно много солнечных элементов - на них строили спутники. Производство организовали в промышленном масштабе, а многочисленные преимущества технологии были доказаны длительным использованием в условиях космоса. Альтернатив, сравнимых по эффективности, для космического пространства нет и по сей день.

    Плюсы и минусы популярности

    Хотя в те времена про государство Жорес Алферов практически не говорил, специальные службы 70-х относились к нему с большим подозрением. Причина была очевидна - многочисленные премии. Ему пытались закрыть выезд из страны. Тогда же появились ненавистники, завистники. Впрочем, природная предприимчивость, способность быстро и адекватно реагировать, ясный ум позволили ученому блестяще справиться со всеми препонами. Не оставляла его и удача. Одним из самых счастливых в своей жизни Алферов признает 1972 г. Он получил ленинскую премию, а когда попытался дозвониться жене, чтобы сообщить об этом, трубку никто не взял. Позвонив родителям, ученый узнал, что премии премиями, но тем временем у него родился сын.

    С 1987 г. Алферов руководил институтом Иоффе, в 89-м вошел в президиум ЛНЦ АН СССР, следующей ступенью стала Академия наук. Когда сменилась власть, а вместе с ней наименование учреждений, Алферов сохранил свои посты - на все он был избран вновь при абсолютном согласии большинства. В начале 90-х он сконцентрировался на наноструктурах: квантовых точках, проволочках, затем воплотил в реальность идею гетеролазера. Такой впервые был продемонстрирован публике в 95-м. Еще спустя пять лет ученый получил Нобелевскую премию.

    Новые дни и новые технологии

    О том, где сейчас Жорес Алферов трудится и живет, знают многие: этот Нобелевский лауреат в области физики - единственный проживающий на территории России. Он руководит «Сколково» и занимается рядом значимых проектов в области физики, поддерживает талантливую, перспективную молодежь. Именно он первый начал говорить о том, что информационные системы наших дней обязаны быть быстрыми, позволяющими передавать объемные сведения за короткие сроки, и одновременно небольшими, мобильными. Во многом возможность конструирования подобной техники обусловлена именно открытиями Алферова. Его работы и труды Кремера стали базой микроэлектроники, оптоволоконных компонентов, используемых при конструировании гетероструктур. Они, в свою очередь, являются фундаментом создания светоизлучающих диодов повышенного уровня эффективности. Их применяют при изготовлении дисплеев, ламп, используют при конструировании светофоров и осветительных систем. Батареи, создание для улавливания и преобразования солнечной энергии, в последние годы становятся все более эффективными в аспекте трансформации энергии в электричество.

    2003 г. был для Алферова последним годом руководства ФТИ: мужчина достиг предельного разрешенного правилами учреждения возраста. Еще три года за ним сохранялось место научного руководителя, он же председательствовал в организованном при институте совете ученых.

    Одним из важных достижений Алферова признается Академический университет, появившийся по его инициативе. В наши дни это учреждение сформировано тремя элементами: нанотехнологическим, общеобразовательным центром и девятью кафедрами высшего образования. В школу принимают с восьмого класса и только особенно одаренных детей. Алферов возглавляет университет, занимает пост ректора с первых дней существования учреждения.

    В марте этого года академику Жоресу Ивановичу Алфёрову, нобелевскому лауреату и члену редколлегии журнала «Экология и жизнь», исполнилось 80 лет. А в апреле пришло известие о том, что Жореса Ивановича назначают научным руководителем инновационного проекта «Сколково». Этот важный проект должен, по сути, создать прорыв в будущее, вдохнув новую жизнь в отечественную электронику, у истоков развития которой и стоял Ж. И. Алфёров.

    В пользу того, что прорыв возможен, говорит история: когда в 1957 г. в СССР был запущен первый спутник, США оказались в положении аутсайдера. Однако американское правительство проявило бойцовский характер, были брошены такие ассигнования в технологию, что число исследователей быстро достигло миллиона! Буквально на следующий год (1958) один из них, Джон Килби, изобрел интегральную схему, заменившую печатную плату в обычных ЭВМ - и родилась микроэлектроника современных компьютеров. Эта история впоследствии получила название «эффект спутника».

    Жорес Иванович очень внимательно относится к воспитанию будущих исследователей, недаром он основал НОЦ - учебный центр, где подготовка ведется со школьной скамьи. Поздравляя Жореса Ивановича с юбилеем, заглянем в прошлое и будущее электроники, где эффект спутника должен не раз проявиться вновь. Хочется надеяться, что и в будущем нашей страны, как когда-то в США, будет накоплена «критическая масса» подготовленных исследователей - для возникновения эффекта спутника.

    «Технический» свет

    Первым шагом к созданию микроэлектроники был транзистор. Пионерами транзисторной эры стали Уильям Шокли, Джон Бардин и Уолтер Браттейн, которые в 1947 г. в «Bell Labs » впервые создали действующий биполярный транзистор. А второй компонентой полупроводниковой электроники стал прибор для прямого преобразования электричества в свет - это полупроводниковый оптоэлектронный преобразователь, к созданию которого Ж. И. Алфёров имел непосредственное отношение.

    Задача прямого преобразования электричества в «технический» свет - когерентное квантовое излучение - оформилась как направление квантовой электроники, родившейся в 1953–1955 гг. По сути, ученые поставили и решили задачу получения совершенного нового вида света, которого раньше не было в природе. Это не тот свет, который льется непрерывным потоком при прохождении тока по вольфрамовой нити или приходит в течение дня от Солнца и состоит из случайной смеси волн разной длины, не согласованных по фазе. Другими словами, был создан свет строго «дозированный», полученный как набор из определенного числа квантов с заданной длиной волны и строго «построенный» - когерентный, т. е. упорядоченный, что означает одновременность (синфазость) излучения квантов.

    Приоритет США по транзистору был определен огромной ношей Отечественной войны, навалившейся на нашу страну. На этой войне погиб старший брат Жореса Ивановича, Маркс Иванович.

    Маркс Алфёров окончил школу 21 июня 1941 г. в Сясьстрое. Поступил в Уральский индустриальный институт на энергетический факультет, но проучился лишь несколько недель, а потом решил, что его долг - защищать Родину. Сталинград, Харьков, Курская дуга, тяжелое ранение в голову. В октябре 1943 г. он провел три дня с семьей в Свердловске, когда после госпиталя возвращался на фронт.

    Три дня, проведенные с братом, его фронтовые рассказы и страстную юношескую веру в силу науки и инженерной мысли 13-летний Жорес запомнил на всю жизнь. Гвардии младший лейтенант Маркс Иванович Алфёров погиб в бою во «втором Сталинграде» - так называли тогда Корсунь-Шевченковскую операцию.

    В 1956 г. Жорес Алфёров приехал на Украину, чтобы найти могилу брата. В Киеве, на улице, он неожиданно встретил своего сослуживца Б. П. Захарченю, ставшего впоследствии одним из ближайших его друзей. Договорились поехать вместе. Купили билеты на пароход и уже на следующий день плыли вниз по Днепру к Каневу в двухместной каюте. Нашли деревню Хильки, около которой советские солдаты, в числе которых был и Маркс Алфёров, отражали яростную попытку отборных немецких дивизий выйти из корсунь-шевченковского «котла». Нашли братскую могилу с белым гипсовым солдатом на постаменте, высящемся над буйно разросшейся травой, в которую были вкраплены простые цветы, какие обычно сажают на русских могилах: ноготки, анютины глазки, незабудки.

    К 1956 г. Жорес Алфёров уже работал в Ленинградском физико-техническом институте, куда он мечтал попасть еще во время учебы. Большую роль в этом сыграла книга «Основные представления современной физики», написанная Абрамом Федоровичем Иоффе - патриархом отечественной физики, из школы которого вышли практически все физики, составившие впоследствии гордость отечественной физической школы: П. Л. Капица, Л. Д. Ландау, И. В. Курчатов, А. П. Александров, Ю. Б. Харитон и многие другие. Жорес Иванович много позже писал, что его счастливая жизнь в науке была предопределена его распределением в Физтех, впоследствии получивший имя Иоффе.

    Систематические исследования полупроводников в Физико-техническом институте были начаты еще в 30-е годы прошлого века. В 1932 г. В. П. Жузе и Б. В. Курчатов исследовали собственную и примесную проводимость полупроводников. В том же году А. Ф. Иоффе и Я. И. Френкель создали теорию выпрямления тока на контакте металл-полупроводник, основанную на явлении туннелирования. В 1931 и 1936 г. Я. И. Френкель опубликовал свои знаменитые работы, в которых предсказал существование экситонов в полупроводниках, введя этот термин и разработав теорию экситонов. Теория выпрямляющего р–n-перехода, легшая в основу р–n-перехода В. Шокли, создавшего первый транзистор, была опубликована Б. И. Давыдовым, сотрудником Физтеха, в 1939 г. Нина Горюнова, аспирантка Иоффе, защитившая в 1950 г. диссертацию по интерметаллическим соединениям, открыла полупроводниковые свойства соединений 3-й и 5-й групп периодической системы (далее А 3 В 5). Именно она создала фундамент, на котором начались исследования гетероструктур этих элементов. (На Западе отцом полупроводников А 3 В 5 считается Г. Велькер.)

    Самому Алфёрову поработать под руководством Иоффе не довелось - в декабре 1950 г., во время кампании по «борьбе с космополитизмом», Иоффе был снят с поста директора и выведен из состава Ученого совета института. В 1952 г. он возглавил лабораторию полупроводников, на базе которой в 1954 г. был организован Институт полупроводников АН СССР.

    Заявку на изобретение полупроводникового лазера Алфёров подал совместно с теоретиком Р. И. Казариновым в разгар поисков полупроводникового лазера. Эти поиски шли с 1961 г., когда Н. Г. Басов, О. Н. Крохин и Ю. М. Попов сформулировали теоретические предпосылки его создания. В июле 1962 г. американцы определились с полупроводником для генерации - это был арсенид галлия, а в сентябре-октябре лазерный эффект получили сразу в трех лабораториях, первой оказалась группа Роберта Холла (24 сентября 1962 г.). И через пять месяцев после публикации Холла была подана заявка на изобретение Алфёрова и Казаринова, от которой ведется отсчет занятиям гетероструктурной микроэлектроникой в Физтехе.

    Группа Алфёрова (Дмитрий Третьяков, Дмитрий Гарбузов, Ефим Портной, Владимир Корольков и Вячеслав Андреев) несколько лет билась над поиском подходящего для реализации материала, пытаясь изготовить его самостоятельно, но нашла подходящий сложный трехкомпонентный полупроводник почти случайно: в соседней лаборатории Н. А. Горюновой. Однако это была «неслучайная» случайность - поиск перспективных полупроводниковых соединений Нина Александровна Горюнова вела направленно, а в вышедшей в 1968 г. монографии сформулировала идею «периодической системы полупроводниковых соединений». Полупроводниковое соединение, созданное в ее лаборатории, обладало необходимой для генерации стабильностью, что определило успех «предприятия». Гетеролазер на этом материале был создан в канун 1969 г., а приоритетной датой на уровне обнаружения лазерного эффекта является 13 сентября 1967 г.

    Новые материалы

    На фоне развернувшейся с начала 60-х годов лазерной гонки почти незаметно возникли светодиоды, которые тоже производили свет заданного спектра, но не обладающий строгой когерентностью лазера. В результате сегодняшняя микроэлектроника включает такие основные функциональные приборы, как транзисторы и их конгломераты - интегральные микросхемы (тысячи транзисторов) и микропроцессоры (от десятков тысяч до десятков миллионов транзисторов), тогда как по сути отдельную ветвь микроэлектроники - оптоэлектронику - составили приборы, построенные на основе гетероструктур по созданию «технического» света - полупроводниковые лазеры и светодиоды. С использованием полупроводниковых лазеров связана новейшая история цифровой записи - от обычных CD-дисков до знаменитой сегодня технологии Blue Ray на нитриде галлия (GaN).

    Светодиод, или светоизлучающий диод (СД, СИД, LED - англ. Light-emitting diode ), - полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

    Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 г. в Университете Иллинойса группой, которой руководил Ник Холоньяк. Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Поэтому в ход пошли такие материалы, как GaAs, InP, InAs, InSb, являющиеся прямозонными полупроводниками. В то же время многие полупроводниковые материалы типа А 3 В Е образуют между собой непрерывный ряд твердых растворов - тройных и более сложных (AI x Ga 1- x N и In x Ga 1- x N, GaAs x P 1- x , Ga x In 1- x P, Ga x In 1- x As y P 1- y и т. п.), на основе которых и сформировалось направление гетероструктурной микроэлектроники.

    Наиболее известное применение светодиодов сегодня - замена ламп накаливания и дисплеев мобильных телефонов и навигаторов.

    Общая идея дальнейшего развития «технического света» - создание новых материалов для светодиодной и лазерной техники. Эта задача неразрывна с проблемой получения материалов с определенными требованиями, предъявляемыми к электронной структуре полупроводника. И главным из этих требований является строение запрещенной зоны полупроводниковой матрицы, используемой для решения той или иной конкретной задачи. Активно ведутся исследования сочетаний материалов, которые позволяют достигать заданных требований к форме и размерам запрещенной зоны.

    Составить представление о многосторонности этой работы можно, взглянув на график, по которому можно оценить многообразие «базовых» двойных соединений и возможности их сочетаний в композиционных гетероструктурах.

    Принимаем тысячи солнц!

    История технического света была бы неполна, если бы наряду с излучателями света не шла разработка его приемников. Если работы группы Алфёрова начались с поисков материала для излучателей, то сегодня один из членов этой группы, ближайший сотрудник Алфёрова и его давний друг профессор В. М. Андреев вплотную занимается работой, связанной с обратным превращением света, причем именно тем превращением, которое используется в солнечных элементах. Идеология гетероструктур как комплекса материалов с заданной шириной запрещенной зоны нашла активное применение и здесь. Дело в том, что солнечный свет состоит из большого количества световых волн различной частоты, в чем как раз и состоит проблема его полного использования, так как материала, который смог бы одинаково преобразовывать свет различной частоты в электрическую энергию, не существует. Получается, что любая кремниевая солнечная батарея преобразует не весь спектр солнечного излучения, а только его часть. Что делать? «Рецепт» обманчиво прост: изготовить слоеный пирог из различных материалов, каждый слой которого реагирует на свою частоту, но в то же время пропускает все остальные частоты без значимого ослабления.

    Это дорогая структура, так как в ней должны быть не только переходы различной проводимости, на которые падает свет, но и множество вспомогательных слоев, например, для того чтобы получаемую ЭДС можно было снять для дальнейшего использования. По сути, «сэндвич»-сборка из нескольких электронных приборов. Использование ее оправдано более высоким КПД «сэндвичей», который эффективно использовать вкупе с солнечным концентратором (линзой или зеркалом). Если «сэндвич» позволяет поднять КПД по сравнению с кремниевым элементом, например, в 2 раза-с 17 до 34%, то за счет концентратора, увеличивающего плотность солнечного излучения в 500 раз (500 солнц), можно получить выигрыш в 2 × 500 = 1000 раз! Это выигрыш в площади самого элемента, т. е. материала надо в 1000 раз меньше. Современные концентраторы солнечного излучения измеряют плотность излучения в тысячах и десятках тысяч «солнц», сконцентрированных на одном элементе.

    Другой из возможных способов - получение материала, который может работать хотя бы на двух частотах или, точнее, с более широким диапазоном солнечного спектра. В начале 1960-х была показана возможность «мультизонного» фотоэффекта. Это своеобразная ситуация, когда наличие примесей создает полосы в запрещенной зоне полупроводника, что позволяет электронам и дыркам «прыгать через пропасть» в два или даже в три прыжка. В результате можно получить фотоэффект для фотонов с частотой 0,7, 1,8 или 2,6 эВ, что, конечно, значительно расширяет спектр поглощения и увеличивает КПД. Если ученым удастся обеспечить генерацию без существенной рекомбинации носителей на тех же примесных полосах, то КПД таких элементов может достигать 57%.

    С начала 2000-х в этом направлении ведутся активные исследования под руководством В. М. Андреева и Ж. И. Алфёрова.

    Есть еще интересное направление: поток солнечного света сначала расщепляется на потоки различных диапазонов частот, каждый из которых затем направляется на «свои» ячейки. Такое направление тоже может считаться перспективным, так как при этом исчезает последовательное соединение, неизбежное в «сэндвич»-структурах типа изображенной выше, лимитирующее ток элемента наиболее «слабым» (в это время дня и на данном материале) участком спектра.

    Принципиальную важность имеет оценка соотношения солнечной и атомной энергетики, высказанная Ж. И. Алфёровым на одной из недавних конференций: «Если бы на развитие альтернативных источников энергии было затрачено только 15% средств, брошенных на развитие атомной энергетики, то АЭС для производства электроэнергии в СССР вообще не потребовались бы!»

    Будущее гетероструктур и новые технологии

    Интересна и другая оценка, отражающая точку зрения Жореса Ивановича: в XXI веке гетероструктуры оставят только 1% для использования моноструктур, т. е. вся электроника уйдет от таких «простых» веществ, как кремний с чистотой 99,99–99,999%. Цифры - это чистота кремния, измеряемая в девятках после запятой, но этой чистотой уже лет 40 как никого не удивить. Будущее электроники, полагает Алфёров, - это соединения из элементов A 3 B 5 , их твердых растворов и эпитаксиальных слоев различных сочетаний этих элементов. Конечно, нельзя утверждать, что простые полупроводники типа кремния не могут найти широкого применения, но все же сложные структуры дают значительно более гибкий ответ на запросы современности. Уже сегодня гетероструктуры решают проблему высокой плотности информации для оптических систем связи. Речь идет об OEIC (optoelectronic integrated circuit ) - оптоэлектронной интегральной схеме. Основу любой оптоэлектронной интегральной микросхемы (оптопары, оптрона) составляют инфракрасный излучающий диод и оптически согласованный с ним приемник излучения, что дает простор формальной схемотехнике для широкого использования этих устройств в качестве приемо-передатчиков информации.

    Кроме того, ключевой прибор современной оптоэлектроники - ДГС-лазер (ДГС - двойная гетероструктура) - продолжает совершенствоваться и развиваться. Наконец, сегодня именно высокоэффективные быстродействующие светодиоды на гетероструктурах обеспечивают поддержку технологии высокоскоростной передачи данных HSPD (High Speed Packet Data service ).

    Но самое главное в выводе Алфёрова не эти разрозненные применения, а общее направление развития техники XXI века - получение материалов и интегральных схем на основе материалов, обладающих точно заданными, рассчитанными на много ходов вперед свойствами. Эти свойства задаются путем конструкторской работы, которая ведется на уровне атомной структуры материала, определяемой поведением носителей заряда в том особом регулярном пространстве, которое представляет собой внутренность кристаллической решетки материала. По сути эта работа - регулирование числа электронов и их квантовых переходов - ювелирная работа на уровне конструирования постоянной кристаллической решетки, составляющей величины нескольких ангстрем (ангстрем - 10 –10 м, 1 нанометр = 10 ангстрем). Но сегодня развитие науки и техники - это уже не тот путь вглубь вещества, каким он представлялся в 60-е годы прошлого века. Сегодня во многом это движение в обратном направлении, в область наноразмеров - например, создание нанообластей со свойствами квантовых точек или квантовых проволок, где квантовые точки линейно связаны.

    Естественно, нанообъекты - лишь один из этапов, которые проходят в своем развитии наука и техника, и на нем они не остановятся. Надо сказать, что развитие науки и техники путь далеко не прямолинейный, и если сегодня интересы исследователей сместились в сторону увеличения размеров - в нанообласть, то завтрашние решения будут конкурировать в разных масштабах.

    Например, возникшие на кремниевых чипах ограничения по дальнейшему увеличению плотности элементов микросхем можно решить двумя путями. Первый путь - смена полупроводника. Для этого предложен вариант изготовления гибридных микросхем, основанных на применении двух полупроводниковых материалов с различными характеристиками. В качестве наиболее перспективного варианта называется использование нитрида галлия совместно с кремниевой пластиной. С одной стороны, нитрид галлия обладает уникальными электронными свойствами, позволяющими создавать высокоскоростные интегральные микросхемы, с другой - использование кремния как основы делает такую технологию совместимой с современным производственным оборудованием. Однако подход со стороны наноматериалов содержит еще более новаторскую идею электроники одного электрона - одноэлектроники.

    Дело в том, что дальнейшую миниатюризацию электроники - размещение тысяч транзисторов на подложке одного микропроцессора - ограничивает пересечение электрических полей при движении потоков электронов в расположенных рядом транзисторах. Идея в том, чтобы вместо потоков электронов использовать один-единственный электрон, который может двигаться в «индивидуальном» временном графике и поэтому не создает «очередей», снижая тем самым напряженность помех.

    Если разобраться, то потоки электронов в общем-то и не нужны - для передачи управления можно подать как угодно малый сигнал, проблема заключается в том, чтобы его уверенно выделить (детектировать). И оказывается, что одноэлектронное детектирование технически вполне осуществимо - для этого используется туннельный эффект, который является для каждого электрона индивидуальным событием, в отличие от обычного движения электронов «в общей массе» - ток в полупроводнике является коллективным процессом. С точки зрения электроники туннельный переход - это перенос заряда сквозь конденсатор, поэтому в полевом транзисторе, где конденсатор стоит на входе, одиночный электрон можно «поймать» по частоте колебаний усиливаемого сигнала. Однако выделить этот сигнал в обычных устройствах удавалось только при криогенных температурах - повышение температуры разрушало условия детектирования сигнала. Но температура исчезновения эффекта оказалась обратно пропорциональной площади контакта, и в 2001 г. удалось сделать первый одноэлектронный транзистор на нанотрубке, в котором площадь контакта была так мала, что позволяла работать при комнатных температурах!

    В этом отношении одноэлектроника повторяет путь, который прошли исследователи полупроводниковых гетеролазеров - группа Алфёрова билась как раз над тем, чтобы найти материал, который обеспечит эффект лазерной генерации при комнатной температуре, а не при температуре жидкого азота. А вот сверхпроводники, с которыми связаны самые большие надежды по передаче больших потоков электронов (силовых токов), пока не удается «вытащить» из области криогенных температур. Это не только существенно тормозит возможности снижения потерь при передаче энергии на большие расстояния - хорошо известно, что перенаправление потоков энергии по территории России в течение суток приводит к 30%-ным потерям на «нагрев проводов», - отсутствие «комнатных» сверхпроводников ограничивает развитие хранения энергии в сверхпроводящих кольцах, где движение тока может продолжаться практически вечно. Недостижимым пока идеалом создания таких колец служат обычные атомы, где движение электронов вокруг ядра порой устойчиво при самых высоких температурах и может продолжаться неограниченно долго.

    Дальнейшие перспективы развития наук о материалах весьма разнообразны. Причем именно с развитием науки о материалах появилась реальная возможность прямого использования солнечной энергии, сулящая огромные перспективы возобновляемой энергетике. Порой именно такие направления работы определяют будущее лицо общества (в Татарии и Чувашии уже планируют «зеленую революцию» и всерьез разрабатывают создание биоэкоградов). Возможно, будущее этого направления состоит в том, чтобы от развития техники материалов шагнуть к пониманию принципов функционирования самой природы, встать на путь использования управляемого фотосинтеза, который может быть распространен в человеческом обществе так же широко, как и в живой природе. Речь уже идет об элементарной ячейке живой природы - клетке, и это следующий, более высокий этап развития после электроники с ее идеологией создания приборов для выполнения какой-то одной функции - транзистора для управления током, светодиода или лазера для управления светом. Идеология клетки - это идеология операторов как элементарных устройств, осуществляющих некий цикл. Клетка служит не изолированным элементом для выполнения какой-то одной функции за счет внешней энергии, но целой фабрикой по переработке доступной внешней энергии в работу поддержания циклов множества различных процессов под единой оболочкой. Работа клетки по поддержанию собственного гомеостазиса и накопления в ней энергии в виде АТФ - захватывающая проблема современной науки. Пока биотехнологи могут лишь мечтать о создании искусственного устройства со свойствами клетки, пригодного для использования в микроэлектронике. И когда это произойдет, несомненно, начнется новая эра микроэлектроники - эра приближения к принципам работы живых организмов, давняя мечта фантастов и давно придуманной науки бионики, все еще не вышедшей из колыбели биофизики.

    Будем надеяться, что создание научного центра инноваций в Сколково сумеет реализовать нечто подобное «эффекту спутника» - открыть новые прорывные области, создать новые материалы и технологии электроники.

    Пожелаем успеха Жоресу Ивановичу Алфёрову на посту научного руководителя этого нового научно-технологического агломерата. Хочется надеяться, что его энергия и настойчивость будут залогом успеха этого предприятия.

    Запрещенная зона - область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Характерные значения ширины запрещенной зоны в полупроводниках составляют 0,1–4 эВ. Примеси могут создать полосы в запрещенной зоне - возникает мультизона.

    Родился в Витебске в 1930 г. Имя получил в честь Жана Жореса, основателя газеты L’Humanite и лидера французской социалистической партии.

    Окончил с золотой медалью школу и в 1952 году окончил факультет электронной техники Ленинградского электротехнического института им. В.И. Ульянова (ЛЭТИ).

    С 1953 г. работал в Физико-техническом институте им. А.Ф. Иоффе, принимал участие в разработке первых отечественных транзисторов и силовых германиевых приборов. В 1970 г. защитил докторскую диссертацию, обобщив новый этап исследований гетеропереходов в полупроводниках. В 1971 г. был удостоен первой международной награды - золотой медали Стюарта Баллантайна Франклиновского института (США), получившей название малой нобелевской премии.

    Королевская Академия Наук Швеции присудила Жоресу И. Алферову Нобелевскую премию по физике за 2000 год - за труды, заложившие основы современной информационной техники - за развитие полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов. Развитие волоконно-оптической связи, интернета, солнечной энергетики, мобильной телефонии, светодиодной и лазерной техники в значительной степени основано на исследованиях и открытиях Ж.И Алферова.

    Так же выдающийся вклад Ж.И. Алферова отмечен многочисленными международными и отечественными премиями и наградами: Ленинской и Государственной премиями (СССР), золотой медалью Велькера (ФРГ), премией Киото (Япония), премией А.Ф. Иоффе, золотой медалью Попова (РАН), Государственной премией РФ, Демидовской премией, премией «Глобальная энергия» (Россия), премией и золотой медалью К. Бойера (США, 2013 г.) и множеством других.

    Ж.И. Алферов избран почетным и иностранным членом более 30 зарубежных академий наук и научных обществ, в том числе национальных академий наук: Италии, Испании, Китая, Кореи и многих других. Единственный из российских ученых, кто одновременно был избран иностранным членом Национальной Академии наук США и Национальной инженерной академии наук США. Более 50 университетов из 20 стран избрали его почетным доктором и профессором.

    Ж.И. Алферов - полный кавалер ордена «За заслуги перед Отечеством», отмечен государственными наградами СССР, Украины, Белоруссии, Кубы, Франции, Китая.

    С 1990 г. - вице-президент АН СССР, с 1991 г. - вице-президент РАН. Является одним из виднейших организаторов академической науки в России и активным сторонником создания образовательных центров на базе ведущих институтов РАН. В 1973 году при ФТИ им была создана первая базовая кафедра оптоэлектроники в ЛЭТИ. Был директором (1987-2003 г.) и научным руководителем (2003-2006 г.) ФТИ им. А.Ф. Иоффе РАН, а с 1988 г. деканом созданного им Физико-технического факультета Ленинградского политехнического института (ЛПИ). В 2002 г. создал Академический физико-технологический университет - первое высшее учебное заведение, входящее в систему РАН. В 2009 г. к университету был присоединён созданный им в 1987 г. на базе ФТИ Лицей «Физико-техническая школа» и Научный центр нанотехнологий и организован Санкт-Петербургский академический университет - научно-образовательным центр нанотехнологий РАН (в 2010 г. получил статус Национального исследовательского университета), в котором стал ректором. Создал собственную научную школу: среди его учеников более 50 кандидатов, десятки докторов наук, 7 членов-корреспондентов РАН. С 2010 г. - сопредседатель вместе с Нобелевским лауреатом Роджером Корнбергом (США) Научно-консультативного совета фонда «Сколково».

    В феврале 2001 г. создал Фонд поддержки образования и науки (Алферовский фонд), вложив в него значительную часть своей Нобелевской премии. Первая благотворительная программа фонда - «Установление пожизненной материальной помощи вдовам академиков и членов-корреспондентов РАН, работавших в Санкт-Петербурге». Фонд учредил стипендии учащимся российских школ и лицеев, студентам и аспирантам вузов, премии и гранты молодым ученым. В ряде стран находятся представительства и самостоятельные фонды поддержки образования и науки, учрежденные Ж.И. Алферовым и созданные при его содействии: в Республике Беларусь, в Казахстане, в Италии, на Украине, в Азербайджане.