• Что можно приготовить из кальмаров: быстро и вкусно

    Студент-радиофизик о том, как физики становятся разработчиками, почему необязательно поступать в технический вуз и сколько получают выпускники-ядерщики

    Изучает радиофизику в ВГУ

    Мы живем в замечательное время, когда кумирами людей становятся физики и инженеры. Наряду с рэперами и блогерами мы слышим имена Илона Маска, Стивена Хокинга и Стива Возняка. Даже в вымышленных мирах инженеры и физики занимают основные роли - вспомните хотя бы Тони Старка или Шелдона Купера.

    Но физику все равно боятся как чего-то страшного и продолжают становиться в очередь в приёмные комиссии гуманитарных факультетов. Давайте разберемся, что дает физическое образование и где потом работать.

    Чем занимаются физики

    Физики и инженеры. Сразу оговорюсь, что в этой статье физик и инженер будут близки по смыслу. Но фактически вы должны разделять: ученые-физики - это по большей мере теоретики, а инженеры - это практики, которые разрабатывают устройства, поддерживают работу оборудования и пишут программы.

    Где нужны физики . Смартфон - понятный и доступный всем гаджет. Инженеры разрабатывают это устройство с нуля: работу аккумулятора, новейшие дисплеи, процессоры, оптику в камерах, системы распознавания лиц и отпечатков пальцев, стандарты сотовой связи. Всё это - физика. Уже после разработки этих компонентов в дело вступают программисты. Они пишут операционные системы и приложения.

    Разработчики с физическим образованием занимаются наноматериалами, телевизорами на квантовых точках, строят АЭС и придумывают конструкции новых электрокаров. Перечислять можно очень долго. Как-то мой преподаватель сказал: «Физика - это всё, что мы видим вокруг себя», - эта фраза лучше всего описывает широту применения профессии.

    Где работают физики

    В России есть несколько крупных сфер, в которых проще всего найти работу:

    🚀 Оборонный комплекс. В нашей стране основным двигателем новых технологий остается армия. Там огромные бюджеты и большой запрос на технологии: нужны новые системы связи, двигатели и космические разработки.

    🚘 Автомобилестроение. У нас не такие востребованные машины, как в той же Германии, но технологии всё равно требуется развивать. Много физики в беспилотных автомобилях . Над ними работают не только программисты нейросетей, но и инженеры. Последние разрабатывают датчики, системы связи и мощные графические процессоры.

    🔆 Атомная энергетика. Одной из самых оплачиваемых сфер, по данным Минобрнауки, является ядерная энергетика и технологии . Это и неудивительно, потому что российские инженеры строят станции по всему миру: в Индии, Финляндии и Турции.

    📡 Научные институты. Российская физическая школа остается одной из самых сильных. У нас много исследовательских институтов, лабораторий и академгородков, есть свои синхротроны, коллайдеры и циклотроны. А физика таит ещё очень много тайн, которые только предстоит открыть.

    Что придется делать

    Физики часто работают инженерами-разработчиками и реже - программистами.

    Разработчики обычно проектируют новые устройства. Это может быть новый двигатель или новый процессор. Профилей, которые сейчас выпускают физические факультеты, очень много. Я учусь в ВГУ, мы готовим радиофизиков, наноэлектронщиков, ядерщиков, оптиков и специализированных программистов. Это только самые популярные профили, есть и другие.

    После физфака часто становятся программистами. Так происходит, потому что на факультетах дают очень хорошую математическую и физическую базу. Программирование - язык, которым описывается какой-то процесс. Нельзя написать прошивку для передающего модуля в смартфоне, не понимая радиофизики. Невозможно создать программу автопилота самолета, не имея представлений об аэрофизике.

    А сколько платят

    Зарплаты сильно зависят от области, в которых вы будете работать. Минобрнауки называет самыми оплачиваемыми среди молодых специалистов, как минимум, две физические специальности:

    💰 Ядерная энергетика и технологии – более 48 тысяч рублей в месяц.

    💰 Авиационная и ракетно-космическая техника – более 46 тысяч рублей в месяц.

    Это зарплаты выпускников вуза. По данным hh.ru cпециалисты с опытом от 5 лет могут получать до 150 тысяч в Москве и 60-80 тысяч в регионах.

    Куда идти учиться

    Многие абитуриенты идут за техническим образованием в политехнические вузы. Там действительно есть специальности, которых в классических вузах не найти. Но последние годы все вузы живут в конкурентной борьбе, потому открывают одинаковые направления, которые больше всего нужны работодателям.

    Поэтому при выборе вуза не обращайте внимания, технический он или классический. Лучше изучите специальности и учебные планы.

    Например, есть МФТИ с классическим образованием и МГТУ им. Баумана с прикладным. Оба вуза конкурируют друг с другом за лучших абитуриентов и готовят кадры для схожих работодателей.

    Что нужно, чтобы поступить

    1. Решите, хотите ли вы идти в науку - заниматься исследованиями и научной работой или вам нужна прикладная специальность. Это поможет с выбором конкретного вуза.

    Технологии энергии

    Инженер-физик по ядерной физике и технологии, работающий в области ядерной энергетики может заниматься:

    – научными исследованиями в ядерной физике с перспективой их промышленного (как правило, энергетического) применения;

    – созданием принципиально новых типов ядерных реакторов, использующих как новые ядерные процессы (например, ториевый цикл), так и новые конструктивные решения (например, газовый реактор на микротвэлах);

    – проектированием и конструированием конкретных АЭС;

    – сопровождением строительства и пусконаладочных работ;

    – эксплуатацией и обслуживанием энергоблоков АЭС;

    – выводом из эксплуатации и консервацией отработавших энергоблоков;

    – разработкой технологий и устройств неэнергетического использования ядерного распада (например, получения радиоизотопов), в том числе, работающих на АЭС;

    – разработкой способов, технологий и оборудования для переработки отработанного ядерного топлива.

    Несмотря на радиофобии, обострившиеся после фукусимской катастрофы в Японии, атомная энергетика продолжает развиваться во всем мире. Разрабатываются новые конструкции ядерных реакторов с повышенной безопасностью и надежностью, большей энергоэффективностью, конструктивной антитеррористической защищенностью. Россия, одна из немногих стран мира, имеющая полный цикл ядерной энергетики – от научных исследований до эксплуатации АЭС. А ГК «Росатом» в 2015 году заняла первое место в рейтинге работодателей, составляемом порталом «Работа.ру».

    Отдельное направление работы инженера-физика по ядерной физике и технологии – ядерная космическая энергетика. Это направление только зарождается и поэтому имеет очень хорошие перспективы. Здесь разрабатываются как ядерные энергоустановки для пилотируемых космических кораблей, предназначенных для межпланетных перелетов, так и энергоустановки для искусственных спутников Земли, выполняющих вполне земные задачи.

    Компетенции

    1. Исследования в области новых ядерных расщепляющихся материалов, новых способов управления ядерной реакцией, новых средств поглощения радиационного излучения.
    2. Разработка и испытания принципиально новых типов ядерных реакторов, использующих новые ядерные процессы или новые конструктивные решения.
    3. Проектирование, конструирование, сопровождение производства и монтажа АЭС.
    4. Эксплуатация и техническое обслуживание АЭС.
    5. Планирование ремонтов, составление технические задания на реконструкцию реакторной части АЭС.
    6. Разработка технологических процессов и оборудования для переработки отработанногоядерного топлива.
    7. Создание способов и технологий захоронения ядерных отходов.
    8. Разработка технологий и оборудования для неэнергетического использования ядерных реакций, в том числе, на АЭС.
    9. Разработка энергообеспечения нетрадиционных объектов (АПЛ, ИСЗ и др.).

    Важные качества

    Инженер-физик по ядерной физике и технологии использует в своей работе огромное количество разных видов приборов как для проведения научных исследований, так и для анализа процессов, идущих в ядерном реакторе, а также состояния самого реактора. Важным методом работы инженера-физика по ядерной физике и технологии является компьютерное моделирование ядерных, тепловых и электроэнергетических процессов, идущих на реальной или создаваемой АЭС; для этого используются программные пакеты численного моделирования и анализа.

    При проектировании новых АЭС инженер-физик по ядерной физике и технологии использует различные программы автоматизированного проектирования и управления жизненным циклом (CAD, CAM, CALS, PDM). Инженер, занятый эксплуатацией и обслуживанием АЭС, использует программы управления активом (EAM).

    Где работает

    • ГК «Росатом» и подведомственные НИИ и КБ
    • РФЯЦ-ВНИИЭФ (Саров)
    • НИЦ «Курчатовский институт»

    Специальности

    • 140301 Ядерная энергетика и теплофизика
    • 140500 Энергомашиностроение
    • 140302 Ядерные физика и технологии

    Наиболее распространенные экзамены при поступлении:

    • Русский язык
    • Математика (профильный) - профильный предмет, по выбору вуза
    • Иностранный язык - по выбору вуза
    • Информатика и информационно-коммуникационные технологии (ИКТ) - по выбору вуза
    • Химия - по выбору вуза
    • Физика - по выбору вуза

    Физика является одной из главных фундаментальных наук, которая занимается изучением закономерностей нашей природы. Физические процессы и явления - неотъемлемая часть нашей жизни. Это весьма многогранная наука, не имеющая пределов, которая объясняет суть абсолютно всех материй. Одним из самых загадочных направлений физики является ядерная физика, которая еще ни одно столетие будет удивлять человечество своими уникальными открытиями. Ввиду такой перспективы развития области некоторые абитуриенты мечтают поступить именно на это направление. Сегодня очень многие вузы приглашают выпускников на отделение 14.03.02 «Ядерные физика и технологии», обеспечивая их качественным обучением и ценными знаниями.

    Условия поступления

    Если вы выбрали это направление, вам важно знать, какие требования должны быть выполнены. Название специальности может натолкнуть на мысль, что для поступления в качестве профильного предмета потребуется сдавать физику, однако это не так. Таковым экзаменом здесь выступает математика профильного уровня, что неудивительно, ведь физика имеет с этим предметом неразрывную связь. Остальные экзамены определяются самими вузами, среди которых могут оказаться такие предметы, как:

    • русский язык,
    • информатика и ИКТ,
    • иностранный язык,
    • физика,
    • химия.

    Будущая профессия

    На данном направлении обучения осуществляется подготовка студентов к работе в научно-исследовательской области, в научных лабораториях и институтах. Кроме того, выпускникам направления прививаются навыки, необходимые для работы в образовательных учреждениях и на предприятиях ядерно-энергетического сектора. Специалисты профиля готовы обеспечивать контроль над технологическими процессами, а также осуществлять управленческую деятельность в компаниях, связанных с нефтехимической промышленностью.

    Куда поступать

    Чтобы получить качественные знания и не разочароваться в выбранной профессии, важно заранее узнать, какие вузы Москвы и страны в целом обеспечивают наиболее эффективную подготовку будущих специалистов. Рекомендуем обратить особое внимание на следующие вузы:

    • Национальный исследовательский ядерный университет «МИФИ»;
    • Уральский федеральный университет им. первого Президента России Б.Н. Ельцина;
    • Национальный исследовательский томский политехнический университет;
    • Сибирский федеральный университет;
    • Воронежский государственный университет;
    • Обнинский институт атомной энергетики;
    • Северо-восточный федеральный университет им. М. К. Аммосова.

    Срок обучения

    Продолжительность обучения на бакалавриате на очном отделении составляет 4 года.

    Дисциплины, входящие в курс обучения

    Программа обучения по степени бакалавра состоит из таких важных предметов, как:

    • введение в ядерную физику,
    • механика,
    • материаловедение,
    • электричество и магнетизм,
    • основы электроники,
    • атомная физика,
    • электродинамика,
    • сопротивление материалов,
    • теория ядерных реакций,
    • инженерная и компьютерная графика,
    • математический анализ,
    • термодинамика и статическая физика,
    • оптика,
    • квантовая механика.

    Приобретаемые навыки

    Целью обучения является формирование у студентов следующих умений и навыков:

    1. Осуществление исследовательских работ в сфере молекулярной инженерии и ядерных технологий.
    2. Проектирование инновационных приборов, техники и материалов.
    3. Разработка электронных систем для физических приборов.
    4. Проектирование и оформление технической документации.
    5. Осуществление контроля за безопасностью и соответствием новых технических разработок принятым стандартам.
    6. Подбор квалифицированного персонала, его техническое оснащение.
    7. Правильная установка оборудования на рабочих местах.
    8. Контроль за качеством изготавливаемой продукции.
    9. Осуществление контроля за ядерной безопасностью.
    10. Навыки в установке и эксплуатации предварительных экземпляров приборов и оборудования.
    11. Проведение оценки перспективности изготавливаемой продукции.
    12. Разработка и оформление инструкций по применению программ и приборов.
    13. Эффективное управление рабочим коллективом и четкое распределение обязанностей.
    14. Качественная организация производственных процессов.

    Перспективы трудоустройства по профессии

    Кем же могут работать выпускники направления 14.03.02 «Ядерные физика и технологии»? Выбор должностей достаточно широк:

    • физик-ядерщик,
    • гидроэнергетик,
    • энергетик,
    • инженер в сфере автоматизированных систем управления,
    • инженер по расчетам режимов ядерного оборудования,
    • электронщик,
    • программист.

    Заработная плата начинающих специалистов довольно скромна и составляет от 15 000 до 20 000 рублей. Однако работники со стажем, качественно выполняющие свои обязанности, получают от 50 тысяч и выше. Опыт работы и заслуги всегда играют ключевую роль в определении уровня зарплаты .

    Преимущества обучения в магистратуре

    Сегодня ядерная физика является весьма перспективным направлением. Поэтому многие выпускники бакалавриата стремятся продолжить свое обучение в магистратуре. Во-первых, это отличная возможность углубить свои знания и поднять профессионализм. Во-вторых, магистратура дает шанс заниматься преподавательской деятельностью в вузах и писать научные труды.

    Некоторые студенты продолжают свою образовательную деятельность за рубежом, что приводит к оттоку специалистов из страны. Однако сегодня правительство России стабильно выделяет финансы на осуществление научных исследований в области ядерной физики, поэтому большинство профессионалов предпочитает оставаться на родине, что способствует развитию отрасли и приводит к новым важным открытиям.

    О природе главенствующее место, несомненно, принадлежит физике. Нас окружают физические тела, вокруг нас происходят и мы сами являемся частью этого бесконечного процесса. Многогранность этой области знаний трудно переоценить, как и трудно указать пределы её распространения. Практически вся живая и неживая материя может быть объяснена её законами, и это удивительно. Но, пожалуй, наибольшее число загадок и открытий таит в себе ядерная физика.

    История появления и специфика профессии

    Кто же такой физик-ядерщик, что представляет собой эта профессия? Чтобы ответить на такие вопросы, следует возвратиться в прошлое, на рубеж 19-го и 20-го веков, когда был открыт атом, и учёные определили Сама же ядерная, или атомная физика - одна из областей этой науки, предметом изучения которой являются атом, его структура и свойства, радиоактивные распады и многое другое. Первый своего рода физик-ядерщик, хотя такого термина тогда ещё не было, - французский учёный А. Беккерель. Именно он, продолжая опыты великого Рентгена, открыл радиоактивность как физическое явление. Другие знаменитые физики и математики - семейная пара Кюри - продолжили исследования, получив полоний и радий. Неоценимую лепту в изучение этого явления внёс Резерфорд, определив на многие годы вперёд магистральные пути физической науки.

    Начало, как говорится, было положено. И первая половина 20-го века прошла под знаменем изучения свойств атома, атомной энергии, её разрушительных и созидательных сил. Атомное ядро, протон и нейтрон как его главные составляющие привлекли пристальное внимание не только физиков, но и химиков, биологов, математиков, медиков, техников, что способствовало появлению новых научных отраслей и дисциплин, смежных с основной. А ядерная физика постепенно преобразуется в самостоятельное направление, состоящее из таких разделов, как:

    В конечном итоге, для того, чтобы изучать, как воздействует радиация на окружающую среду и человека, как контролировать что делать с ядерными отходами, как правильно и безопасно эксплуатировать и разного рода термоядерные установки, и была «создана» профессия физик-ядерщик.

    Задача специалистов - выявлять ошибки и устранять их первопричины. Профессия требует от него основательных, прочных знаний и отличной теоретической и практической подготовки. К сферам компетенции относятся, кроме фундаментальных понятий, знание устройства реакторов, технологии их функционирования, умение диагностировать, работать со специальными приборами и многое другое. Именно физик-ядерщик делает заключение о том, насколько работоспособен и экологически безопасен. Он принимает решение запускать ректор или останавливать, оставить работать в прежнем темпе или перезагружать.

    Сфера применения

    Профессия ядерного физика востребована, прежде всего, в таких наукоёмких производствах, как работа АЭС, в научно-исследовательских и экспериментальных лабораториях, вузах и т.д.


    По оценкам ГК «Росатом» ежегодная потребность в новых специалистах для отрасли составляет 3-3,5 тыс. человек. Таким образом, подготовка компетентного персонала для атомной энергетики является одной из наиболее актуальных проблем развития ядерно-энергетического сектора России.

    Учебно-методическое обеспечение

    Качество ядерно-технического образования сегодня контролируется тремя учебно-методическими объединениями (УМО).

    УМО на базе Московского инженерно-физического института в рамках направления «Ядерная физика и технологии» занимается координацией образования, обучения и методической работы в 19 вузах и шести военных школах по следующим специальностям:

    • «Ядерные реакторы и энергетические установки»,
    • «Охрана и нераспространение ядерных материалов»,
    • «Электроника и автоматика физических установок»,
    • «Радиационная безопасность человека и окружающей среды»,
    • «Физика пучков заряженных частиц и технологии ускорения»,
    • «Физика атомного ядра и элементарных частиц»,
    • «Физика конденсированного состояния материалов»,
    • «Физика кинетических ­явлений».

    УМО на базе Российского химико-технологического университета им. Д.И. Менделеева ведет аналогичные работы с семью вузами, выпускающих специалистов по направлению «Химические технологии». Специальности – «Современные химические технологии для энергетической отрасли» и «Химические технологии редких элементов и редкоземельных материалов».

    УМО на базе Московского энергетического института контролирует семь вузов по направлению «Атомная и водородная энергетика». Специальности:

    • «Атомные электростанции и ядерные установки»,
    • «Техническая физика термоядерных реакторов и плазменных установок»,
    • «Водные и топливные технологии на тепловых и атомных электростанциях».

    Подготовка специалистов

    В настоящее время в 22 российских вузах действуют 32 программы по ядерным специальностям, предусматривающие по окончании получение квалификации инженера (специалиста), и более 25 магистерских программ.

    Основными государственными вузами, готовящими инженеров-атомщиков, являются:

    • Национальный исследовательский ядерный университет «МИФИ» – базовый вуз ГК «Росатом»;
    • Московский государственный технический университет им. Н.Э. Баумана (МГТУ);
    • Ивановский государственный энергетический университет (ИГЭУ);
    • Московский энергетический институт (технический университет, МЭИ);
    • Российский химико-технологический университет им. Д.И. Менделеева (РХТУ);
    • Обнинский институт атомной энергетики (ИАТЭ);
    • Санкт-Петербургский государственный политехнический университет (СПбГПУ);
    • Нижегородский государственный технический университет (НГТУ);
    • Томский политехнический университет (ТПУ);
    • Уральский государственный технический университет (УГТУ).

    В большинстве вузов имеются экспериментальные установки, на которых студенты могут выполнять свои лабораторные работы и исследовательские задания, получать практический опыт. Например, в НИЯУ «МИФИ» и ТПУ есть рабочие исследовательские реакторные установки, в НГТУ, МЭИ, СПбГУ – уникальные экспериментальные установки для теплогидравлических исследований различных теплоносителей, в РХТУ, УГТУ и ТПУ – радиохимические лаборатории, оснащенные сложной измерительной аппаратурой. На базе НИЯУ «МИФИ» также создан ряд исследовательских центров – ядерный, ускорения частиц, лазерный, материаловедения, нераспространения, нанотехнологий и другие.

    Вузы проводят образование и обучение в соответствии с учебными планами и стандартами, которые отражают специфические требования, предъявляемые к специалистам в данной области. К таким стандартам относятся:

    • только очное высшее образование;
    • особое внимание, уделяемое фундаментальным знаниям физики и математики, в сочетании с инженерными навыками;
    • значительная доля практических лабораторных занятий;
    • исследовательская работа студентов, начиная с седьмого семестра;
    • продолжительность обучения – пять-шесть лет, при этом на преддипломную практику и подготовку дипломной работы отводится по полгода;
    • жесткие требования к профессиональным качествам студентов, в которые обязательно входят культура безопасности и знание вопросов нераспространения ядерных ­материалов.

    Консолидация образовательной инфраструктуры

    Компетентный специалист-ядерщик обладает глубокими познаниями в естественных науках, различными инженерными навыками, способностью и готовностью осваивать новые ядерные технологии и технику, владеет методологией выполнения численных компьютерных и натурных экспериментов, оценки надежности и достоверности экспериментальных данных. Он должен быть готов принимать решения, справляться с оптимизационными задачами с большим количеством параметров и критериев. Компетентность такого специалиста предполагает умение учитывать технологические, эргономические и экономические ограничения, владение соответствующими навыками в информационных технологиях, навыки общения, необходимые для командной работы, умение контактировать со специалистами из смежных с атомной технических областей, способность работать в рамках международных проектов, хороший уровень владения английским языком.

    Для достижения указанных целей было решено консолидировать знания и инфраструктуру российских ядерных образовательных учреждений. Первый шаг был сделан в 2007 году, когда создали Российский ядерный инновационный консорциум (РЯИК), в состав которого входит 21 вуз, три института повышения квалификации и 12 научно-исследовательских центров.

    В декабре 2009 года создан Национальный исследовательский ядерный университет – сетевой региональный академический и исследовательский комплекс на базе МИФИ (НИЯУ «МИФИ»).

    Подобное единое образовательное пространство создается в соответствии с текущими принципами и тенденциями в ядерно-инженерном образовании по всему миру.

    Сотрудничество с предприятиями

    В последние годы российские вузы получили возможность более эффективно использовать исследовательские установки ведущих российских ядерных институтов и промышленных предприятий для практических занятий, исследовательских и дипломных работ студентов.

    Например, в ГНЦ РФ-ФЭИ (Обнинск) критические стенды БФС-1 и БФС-2 используются как в исследовательских целях, так и в качестве ценного образовательного ресурса при обучении студентов, преподавателей и специалистов. Сегодня большой объем учебного материала и установок, включая лаборатории, стал доступен для отечественных и зарубежных студентов. На стендах БФС-1 и БФС-2 также есть архивные данные по различным выполнявшимся на них демонстрационным испытаниям и экспериментам по широкому спектру задач, включая имитацию условий быстрых реакторов различных типов, оптимизацию нейтронно-физического режима их циклов, подтверждение ядерной безопасности. В сочетании с постоянно расширяющейся программой лекционных курсов и экспериментов, приводимых в качестве примеров, данные стенды предоставляют студентам уникальную возможность доступа к реальной натурной экспериментальной работе и ее результатам. Фактически, все, что находится в настоящее время на данной площадке, связано, так или иначе, с будущими реакторами на быстрых нейтронах.

    ОАО «ГНЦ НИИАР» в Димитровграде также предлагает свои экспериментальные стенды и персонал для обучения.

    Студенты соответствующих специальностей направляются для прохождения преддипломной практики и написания дипломных работ на АЭС Российской Федерации, благодаря чему происходит объединение усилий профессорского состава и специалистов-практиков для подготовки будущих профессионалов. НИЯУ «МИФИ» вместе с ведущими организациями атомной отрасли организовали 26 научно-образовательных центров, которые объединяют усилия организаций и университета как для проведения научных исследований, так и для обучения студентов и аспирантов. Многие из них победили в конкурсе научно-образовательных центров в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

    Международное партнерство

    Начиная с 1997 года, действует первая в мире магистерская программа по обучению специалистов в области гарантий и охраны ядерных материалов в рамках совместного проекта Министерства энергетики США, ведущих американских ядерных лабораторий и МИФИ.

    В последние годы группа преподавателей из США и РФ также занимается разработкой новых программ подготовки магистров, которые должны будут работать над разрешением возникающих в настоящее время новых мировых проблем. Совместная российско-американская программа международной ядерной безопасности, реализуемая при поддержке Министерства энергетики США и концерна «Росэнергоатом», предоставляет преподавателям ядерных курсов Техасского A&M, Мерлиндского и Орегонского университетов (США) и НИЯУ «МИФИ» возможность совместно работать над подготовкой человеческих ресурсов для ядерной отрасли.

    Профессоры этих вузов, начиная с 2004 года, создают новые магистерские программы. Разработанные ими новые учебные планы для студентов всего мира предполагают выполнение экспериментальных и теоретических исследований, курс лекций по физике быстрых реакторов общей продолжительностью 72 часа, проведение практических работ. В рамках программы международной ядерной безопасности студенты могут проходить практику на установках Франции, Швейцарии и РФ.

    Ряд вузов предлагают инновационные проекты в рамках инициатив по управлению ядерными знаниями и GNEP, например, прохождение зарубежной практики на объектах в РФ для иностранных студентов, курсы ядерно-технического английского языка для студентов из третьих стран, краткосрочные теоретические курсы лекций, проводимые ведущими специалистами и экспертами-ядерщиками. НИЯУ «МИФИ» активно сотрудничает с МАГАТЭ по управлению и сохранению ядерных знаний и разработке примерных образовательных программ в области «Nuclear Security and Safety» и «Nuclear Technologies and Engineering». Миссия МАГАТЭ по управлению ядерными знаниями, которая посетила НИЯУ «МИФИ» в январе этого года, подтвердила ведущую роль университета в российской системе ядерного образования. Отмечено, что НИЯУ «МИФИ» имеет все возможности для становления как международного регионального центра ядерного образования, ведущего подготовку, переподготовку и повышение квалификации кадров в области мирного использования атомной энергии для стран, вставших на путь развития атомной энергетики. НИЯУ «МИФИ» уже вовлечен в работу МАГАТЭ по программам технической помощи Белоруссии и Армении для развития необходимых человеческих ресурсов.

    Главная цель всех этих мероприятий – обеспечить мотивацию нового поколения студентов для работы в отрасли, подготовить их к решению различных технологических проблем, а также способствовать соблюдению режима нераспространения и международной безопасности.