• Что можно приготовить из кальмаров: быстро и вкусно

    Морская мина является боеприпасом, устанавливаемом в воде скрытно. Она предназначается за повреждения водного транспорта противника или затруднения его движения. Подобные военные изделия активно применяются в наступательных и оборонительных операциях. После установки они длительный период остаются в боевой готовности, взрыв же происходит внезапно, а обезвредить их довольно сложно. Морская мина представляет собой заряд взрывоопасных материалов, укомплектованных в водонепроницаемый корпус. Внутри конструкции также имеются особые приборы, позволяющие безопасно обращаться с боеприпасом и взрывающие его при необходимости.

    История создания

    Самые первоначальные упоминания морских мин зафиксированы в записях офицера Мин Цзяо Ю в XIV веке. В истории Китая о подобной эксплуатации взрывчатых веществ упоминается и в XVI веке, когда шли столкновения с японскими разбойниками. Боеприпас умещался в деревянный контейнер, защищенный от влаги шпаклевкой. Несколько дрейфующих в море мин с запланированным разрывом были установлены генералом Ци Цзюйган. В дальнейшем механизм активизации взрывчатки приводился в действие при помощи длинного шнура.

    Проект об использование морских мир был разработан Раббардсом и представлен королеве Англии Елизавете. В Голландии также происходило создание оружия, получившего название «плавающие хлопушки». На практике подобное оружие оказалось непригодным к эксплуатации.

    Полноценную морскую мину изобрел американец Бушнель. Использовали ее против Британии в войне за независимость народов. Боеприпас был герметичной бочкой с порохом. Мина дрейфовала в сторону врага, разрываясь при контакте с кораблем.

    Электронный взрыватель мины был разработан в 1812 году. Создал это нововведение русский инженер Шиллинг. Позднее Якоби открыл якорную мину, способную находиться в плавучем состояние. Последние в количестве более полутора тысяч штук были расставлены в Финском заливе российскими военными в период Крымской войны.

    По официальной статистике военно-морских сил России, первым удачным случаем использования морской мины считается 1855 год. Боеприпасы активно применялись в ходе Крымских и русско-японских военных событий. В Первую Мировую с их помощью было потоплено около четырех сотен кораблей, из которых девять были линейными суднами.

    Разновидности морских мин

    Морские мины могут разделяться по нескольким различным параметрам.

    По виду монтажа боеприпаса отличают:

    • Якорные прикрепляются на нужной высоте специальным механизмом;
    • Донные опускаются на морское дно;
    • Плавающие дрейфуют по поверхности;
    • Всплывающие удерживаются якорем, но при включение поднимающиеся из воды вертикально;
    • Самонаводящиеся или электроторпеды удерживаются на месте якорем или лежат на дне.

    По способу взрыва разделяют:

    • Контактные активируются при контакте с корпусом;
    • Гальваноударные реагируют на нажатие по выпирающему колпаку, где расположен электролит;
    • Антенные взрываются при столкновении со специальной тросовой антенной;
    • Безконтактные действуют при приближении судна на определенное расстояние;
    • Магнитные откликаются на магнитное поле корабля;
    • Акустические взаимодействуют с акустическим полем;
    • Гидродинамические взрываются при смене давления от хода судна;
    • Индукционные активируются при колебания магнитного поля, то есть взрываются исключительно под идущими галеонами;
    • Комбинированные сочетают в себе разные типы.

    Также морские мины помогут различаться по кратности, управляемости, избирательности и виду заряда. Боезапасы постоянно улучшаются по мощности. Создаются более новые типы бесконтактный взрывателей.

    Носители

    Морские мины доставляются на место надводными судами или же подводными лодками. В некоторых случаях боеприпасы сбрасываются в воду при помощи авиации. Иногда их располагают с берега, когда требуется осуществить взрыв на небольшой глубине при противодействие десанту.

    Морские мины время Второй Мировой войны

    В определенные годы среди морских сил мины являлись «оружием слабого» и не имели популярности. Такому виду вооружения не уделяли особого внимания крупные морские державы, такие как Англия, Япония и США. В Первую Мировую отношение к оружию кардинально изменилось, тогда по подсчетам было поставлено приблизительно 310 000 мин.

    В годы Второй Мировой морские «взрывчатки» получили широкую практику. Фашистская Германия использовала мины активно, только в Финский залив было доставлено около 20 тысяч единиц.

    Во время войны оружие постоянно совершенствовалось. Каждый старался повысить его эффективность в бою. Именно тогда появились на свет магнитные, акустические и комбинированные морские мины. Использование этого вида вооружения не только с воды, но и с авиации расширило их потенциал. Под угрозой оказались порты, военные морские базы, судоходные реки и другие водные объекты.

    От морских мин был понесен сильный ущерб во всех направлениях. Примерно десятая часть транспортных единиц были уничтожены с применением этого вида вооружения.

    В нейтральных частях Балтийского моря на момент начала военных действий было установлено около 1120 мин. А характерные особенности области только способствовали эффективному применения боеприпаса.

    Одной из самых известных немецких мин стала Luftwaffe Mine B, доставляемая до места назначения самолетами. LMB являлась популярной из всех собранных в Германии морских донных неконтактных мин. Ее успех стал настолько значимым, что ее приняли на вооружение и при установке с кораблей. Мина получила название Рогатая смерть или Магнитная смерть.

    Современные морские мины

    Самой мощной из отечественных мин, созданных в до военном времени, признана M-26. Ее заряд составляет 250 кг. Это якорная «взрывчатка» с ударно-механическим типом активации. Из-за значительного объема заряда форма боеприпаса была изменена с шаровой на сфероцилиндрическу. Ее плюсом являлось то, что на якоре она располагалась горизонтально и транспортировать ее было проще.

    Еще одним достижением наших соотечественников в сфере военного вооружения кораблей стала гальваноударная мина КБ, используемая как противолодочное оружие. В ней были впервые использованы чугунные колпаки-предохранители, покидавшие свое место автоматически при погружении в воду. В 1941 году к мине добавили клапан потопления, позволяющей ей самостоятельно погружаться на дно при отрыве от якоря.

    В послевоенное время отечественные ученые возобновили гонку за лидерство. В 1957 году была выпущена единственная самоходная подводная ракета. Ею стала реактивная всплывающая мина КРМ. Это стало толчком к разработке кардинально нового типа оружия. Устройство КРМ произвело полную революцию в производстве отечественного морского вооружения.

    В 1960 году СССР приступило к воплощению передовых минных комплексов, состоящих из мин-ракет и торпед. Через 10 лет ВМФ стал активно использовать противолодочные мины-ракеты ПМР-1 и ПМР-2, не имеющие аналогов за границей.

    Очередным прорывом можно назвать мину-торпеду МПТ-1, имеющую двухканальную систему поиска и распознавания цели. Ее разработка длилась девять лет.

    Все имеющиеся данные и испытания стали хорошей платформой для формирования более передовых форм оружия. В 81 году была закончена первая российская универсальная противолодочная мина-торпеда. Она незначительно отставала по своим параметрам американской конструкции Captor, при этом опережая ее в глубинах установки.

    УДМ-2, вошедшая на снабжение в 78 году, применялась для повреждения надводных и подводных кораблей всех типов. Мина являлась универсальной со всех сторон, начиная от установки и заканчивая самоликвидацией на суше и в мелководье.

    На суше мины не приобрели особого тактического значения, так и оставшись дополнительным типом вооружения. Морские мины получили совершенную роль. Только появившись, они стали стратегическим оружием, нередко смещающим остальные виды на второй план. Это связано с ценой для боя каждого отдельного судна. Численность кораблей в морском флоте определена и потеря даже одного галеона может сменить ситуацию в пользу противника. Каждое судно имеет сильную боевую мощь и значительный экипаж. Взрыв одной морской мины под судном может сыграть огромную роль в ходе всей войны, что несравнимо с множеством взрывов на суше.

    Отечественные разработки морского минного оружия вошли в историю мировых войн. В арсенал наших войск входили мины, аналогов которым прежде в мире не было. Мы собрали факты о самых грозных образцах разного времени.

    "Сахарная" угроза

    Одной из самых грозных мин предвоенного времени, созданных в нашей стране, считается M-26, имеющая заряд в 250 килограммов. Якорную мину с ударно-механическим взрывателем разработали в 1920 году. Ее прототип образца 1912 года имел массу взрывчатого вещества в два с половиной раза меньшую. Из-за увеличения заряда была изменена форма корпуса мины - с шаровой на сфероцилиндрическую.

    Большим плюсом новой разработки было то, что на тележечном якоре мина располагалась горизонтально: это облегчило ее постановку. Правда, небольшая длина минрепа (троса для крепления мины к якорю и удержания ее на определенном расстоянии от поверхности воды) ограничила применение этого оружия в Черном и Японском морях.

    Мина образца 1926 года стала самой массовой из всех применяемых советским военно-морским флотом в годы Великой отечественной войны. К началу боевых действий наша страна имела почти 27 тысяч таких устройств.

    Еще одной прорывной предвоенной разработкой отечественных оружейников стала большая корабельная гальваноударная мина КБ, которую использовали, в том числе, и как противолодочное оружие. Впервые в мире на ней применили предохранительные чугунные колпаки, которые автоматически сбрасывались в воде. Они закрывали гальваноударные элементы (минные рожки). Любопытно, что колпаки были зафиксированы на корпусе при помощи чеки и стальной стропки с сахарным предохранителем. Перед установкой мины чеку удаляли, а после, уже на месте, распускалась и стропка - благодаря таянию сахара. Оружие становилось боевым.

    В 1941 году мины КБ оснастили клапаном потопления, который позволял устройству, в случае отрыва от якоря, самозатопляться. Это обеспечивало безопасность отечественных кораблей, которые находились в непосредственной близости от оборонительных заграждений. В начале войны это была самая совершенная для своего времени контактная корабельная мина. Флотские арсеналы имели почти восемь тысяч таких образцов.

    В общей сложности во время войны на морских коммуникациях было выставлено более 700 тысяч различных мин. Они уничтожили 20 процентов от всех кораблей и судов воюющих стран.

    Революционный прорыв

    В послевоенные годы отечественные разработчики продолжили борьбу за первенство. В 1957 году они создали первую в мире самодвижущуюся подводную ракету - реактивно-всплывающую мину КРМ, которая стала базой для создания принципиально нового класса оружия - РМ-1, РМ-2 и ПРМ.

    В качестве отделителя в мине КРМ использовалась пассивно-активная акустическая система: она обнаруживала и классифицировала цель, давала команду на отделение боевой части и запуск реактивного двигателя. Вес взрывчатого вещества составлял 300 килограммов. Устройство можно было устанавливать на глубину до ста метров; оно не вытраливалось акустическими контактными, в том числе, придонными тралами. Запуск производился с надводных кораблей - эсминцев и крейсеров.

    В 1957 году началась разработка новой реактивно-всплывающей мины для постановки ее как с кораблей, так и с самолетов, а потому руководство страны решило не производить большое количество мин КРМ. Ее создателей представили к Государственной премии СССР. Это устройство произвело настоящую революцию: конструкция мины КРМ кардинально повлияла на дальнейшее развитие отечественного морского минного оружия и разработку образцов баллистических и крылатых ракет с подводным стартом и траекторией.

    Без аналогов

    В 60-е годы в Союзе началось создание принципиально новых минных комплексов - атакующих мин-ракет и мин-торпед. Спустя примерно десять лет на вооружение в военно-морской флот приняли противолодочные мины-ракеты ПМР-1 и ПМР-2, которые не имели зарубежных аналогов.

    Еще одним прорывом стала противолодочная мина-торпеда ПМТ-1. Она имела двухканальную систему обнаружения и классификации цели, стартовала в горизонтальном положении из герметичного контейнера боевой части (противолодочной электрической торпеды), использовалась на глубине до 600 метров. Разработка и испытания нового оружия шли в течение девяти лет: на вооружение ВМФ новую мину-торпеду приняли в 1972 году. Коллективу разработчиков была присуждена Государственная премия СССР. Создатели стали в буквальном смысле первопроходцами: впервые в отечественном миностроении они применили модульный принцип исполнения, использовали электрическую связь узлов и элементов аппаратуры. Это решило проблему защиты взрывоопасных цепей от токов высокой частоты.

    Заделы, полученные в ходе разработки и испытаний мины ПМТ-1, послужили толчком к созданию новых, более совершенных образцов. Так, в 1981 году оружейники завершили работу над первой отечественной универсальной по носителям противолодочной миной-торпедой. Она лишь немного уступала в некоторых тактико-технических характеристиках подобному американскому устройству "Captor", превосходя его в глубинах постановки. Таким образом, по мнению отечественных специалистов, как минимум до середины 70-х годов на вооружении военно-морских сил ведущих мировых держав подобных мин не было.

    Универсальная донная мина УДМ-2, принятая на вооружение в 1978 году, была предназначена для поражения кораблей и подводных лодок всех классов. Универсальность этого оружия проявлялась во всем: его постановка производилась как с кораблей, так и с самолетов (военных и транспортных), причем, в последнем случае без парашютной системы. Если мина попадала на мелководье или сушу, она самоликвидировалась. Вес заряда УДМ-2 составлял 1350 килограммов.

    Мины морские

    боевое средство (вид морских боеприпасов) для поражения кораблей противника и затруднения их действий. Основные свойства М. м.: постоянная и длительная боевая готовность, внезапность боевого воздействия, сложность обезвреживания мин. М. м. могут устанавливаться в водах противника и у своего побережья (см. Минные заграждения). М. м. представляет собой заряд взрывчатого вещества, заключённый в водонепроницаемом корпусе, в котором помещены также приборы и устройства, вызывающие взрыв мины и обеспечивающие безопасность обращения с ней.

    Первую, правда неудачную, попытку применения плавучей мины предприняли русcкие инженеры в русско-турецкой войне 1768-1774. В 1807 в России военным инженером И. И. Фитцумом была сконструирована М. м., подрываемая с берега по огнепроводному шлангу. В 1812 русский учёный П. Л. Шиллинг осуществил проект мины, взрываемой с берега с помощью электрического тока. В 40-50-х гг. академик Б. С. Якоби изобрёл гальваноударную мину, которая устанавливалась под поверхностью воды на тросе с якорем. Эти мины впервые были применены во время Крымской войны 1853-56. После войны русские изобретатели А. П. Давыдов и др. создали ударные мины с механическим взрывателем. Адмирал С. О. Макаров, изобретатель Н. Н. Азаров и др. разработали механизмы автоматической установки мин на заданное углубление и усовершенствовали способы постановки мин с надводных кораблей. М. м. получили широкое применение в 1-й мировой войне 1914-18. Во 2-й мировой войне 1939-45 появились неконтактные мины (главным образом магнитные, акустические и магнитно-акустические). В конструкции неконтактных мин были введены приборы срочности и кратности, новые противотральные устройства. Для постановки мин в водах противника широко использовались самолёты.

    М. м. в зависимости от их носителей делятся на корабельные (сбрасываются с палубы кораблей), лодочные (выстреливаются из торпедных аппаратов подводной лодки) и авиационные (сбрасываются с самолёта). По положению после постановки М. м. делятся на якорные, донные и плавающие (с помощью приборов удерживаются на заданном расстоянии от поверхности воды); по типу взрывателей - на контактные (взрываются при соприкосновении с кораблём), неконтактные (взрываются при прохождении корабля на определённом расстоянии от мины) и инженерные (подрываются с берегового командного пункта). Контактные мины (рис. 1 , 2 , 3 ) бывают гальваноударные, ударно-механические и антенные. Взрыватель контактных мин имеет гальванический элемент, ток которого (во время соприкосновения корабля с миной) замыкает при помощи реле внутри мины электрическую цепь запала, что вызывает взрыв заряда мины. Неконтактные якорные и донные мины (рис. 4 ) снабжаются высокочувствительными взрывателями, реагирующими на физические поля корабля при прохождении им вблизи мин (изменяющееся магнитное поле, звуковые колебания и др.). В зависимости от природы поля, на которое реагируют неконтактные мины, различают магнитные, индукционные, акустические, гидродинамические или комбинированные мины. Схема неконтактного взрывателя включает элемент, воспринимающий изменения внешнего поля, связанные с прохождением корабля, усилительный тракт и исполнительное устройство (цепь запала). Инженерные мины делятся на управляемые по проводам и по радио. Для затруднения борьбы с неконтактными минами (траления мин) в схему взрывателей включаются приборы срочности, задерживающие приведение мины в боевое положение на любой требуемый период, приборы кратности, обеспечивающие взрыв мины только после заданного числа воздействий на взрыватель, и приборы-ловушки, вызывающие взрыв мины при попытке её разоружения.

    Лит.: Белошицкий В. П., Багинский Ю. М., Оружие подводного удара, М., 1960; Скороход Ю. В., Хохлов П. М., Корабли противоминной обороны, М., 1967.

    С. Д. Могильный.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Смотреть что такое "Мины морские" в других словарях:

      Боевое средство (морские боеприпасы) для поражения кораблей противника. Делятся на корабельные, лодочные (выстреливаются из торпедных аппаратов подводной лодки) и авиационные; на якорные, донные и плавающие … Большой Энциклопедический словарь

      Боевое средство (морские боеприпасы) для поражения кораблей противника. Делятся на корабельные, лодочные (выстреливаются из торпедных аппаратов подводной лодки) и авиационные; на якорные, донные и плавающие. * * * МИНЫ МОРСКИЕ МИНЫ МОРСКИЕ,… … Энциклопедический словарь

      Мины морские - МИ́НЫ МОРСКИ́Е. Устанавливались в воде для поражения надвод. кораблей, подводных лодок (ПЛ) и судов противника, а также затруднения их плавания. Имели водонепроницаемый корпус, в котором помещался заряд ВВ, взрыватель и устройство, обеспечивающие … Великая Отечественная война 1941-1945: энциклопедия

      Морские (озёрные, речные) и сухопутные мины специальной конструкции для постановки с летательных аппаратов минных заграждений в акватории и на суше. М., устанавливаемые в акватории, предназначены для поражения судов и подводных лодок; бывают… … Энциклопедия техники

      Тренировка по обезвреживанию учебной морской мины в американском флоте Морские мины боеприпасы, скрытно установленные в воде и предназначенные для поражения подводных лодок, кораблей и судов противника, а также для затруднения их плавания.… … Википедия

      Морские мины - один из видов оружия военно морских сил, предназначенный для поражения кораблей, а также для ограничения их действий. М. м. представляет собой заряд бризантного взрывчатого вещества, заключенный в водонепроницаемом корпусе, в котором помещены… … Краткий словарь оперативно-тактических и общевоенных терминов

      мины - Рис. 1. Схема авиационной беспарашютной донной неконтактной мины. мины авиационные — морские (озёрные, речные) и сухопутные мины специальной конструкции для постановки с летательных аппаратов минных заграждений в акватории и на суше. М.,… … Энциклопедия «Авиация»

    Не совсем обычное сочетание «авиационная» и «морская» у некоторых вызывает недоумение, но при ближайшем рассмотрении оно оказывается вполне логичным и оправданным, поскольку наиболее точно выражает назначение оружия и средства его применения. Морская мина имеет довольно длительную историю развития и совершенствования и обычно определяется как «заряд взрывчатого вещества, заключенный в герметичный корпус, установленный на некотором углублении от поверхности воды или на грунт и предназначенный для поражения надводных кораблей и подводных лодок».

    Нельзя сказать, чтобы в авиации к минам относились с должным уважением, скорее наоборот, их откровенно недолюбливали. Объясняется это тем, что экипаж не видел результатов применения оружия, да и вообще никто не мог с достаточной достоверностью сообщить, куда в конечном итоге подевалась мина. В дополнение ко всему мины, особенно первых образцов, были громоздкими, изрядно портили и без того не очень безупречную аэродинамику самолетов, приводили к существенному увеличению взлетного веса и к изменениям центровки. К этому следует добавить довольно сложную процедуру подготовки мин (доставка из арсеналов флота, установка запалов, приборов срочности, кратности, источников питания и др.).

    Моряки, оценив способности авиации быстро прибывать в назначенный район минных постановок и достаточно скрытно производить их постановку, тем не менее, имели претензии к точности, справедливо намекая, что выставленные авиацией мины в некоторых случаях оказываются опасными не только для противника. Впрочем, точность постановки мин зависела не только от экипажей, но и от района, метеорологических условий, метода прицеливания, степени совершенства навигационного оборудования наших самолетов и др.

    Возможно, эти причины, а также невысокая грузоподъемность самолетов тормозили создание авиационных мин. Впрочем, с разработкой морских мин, предназначенных для постановки с кораблей, обстановка была не лучше, и различного рода заявления о ведущей роли нашей страны в создании такого оружия, мягко говоря, не совсем соответствуют исторической правде и действительному состоянию дел.

    Авиационные мины должны удовлетворять некоторым специфическим требованиям:

    – не ограничивать летные характеристики самолета;

    – выдерживать относительно высокие ударные нагрузки при приводнении;

    – их парашютная система (если она предусматривается) не должна демаскировать постановку;

    – в случае попадания на сушу, палубу корабля и глубину менее заданной мины должны подрываться;

    – должна обеспечиваться безопасная посадка самолета с минами.

    Имеются и другие требования, но они относятся ко всем минам и поэтому в статье не рассматриваются.

    Выполнение одного из основных требований к минам привело к необходимости снижения их перегрузок в момент приводнения. Это достигается как принятием мер по усилению конструкции, так и путем уменьшения скорости приводнения. На основании многочисленных исследований пришли к заключению, что наиболее простым и дешевым устройством для торможения, применимым и на минах, является парашют.

    Мина, снабженная значительным по площади парашютом, приводняется с вертикальной скоростью порядка 15- 60 м/с. Парашютный метод обеспечивает возможность постановки мин на мелководье при малых динамических нагрузках приводнения. Однако парашютному методу свойственны существенные недостатки и, прежде всего, низкая точность постановки, невозможность использования для прицеливания бомбардировочных прицелов, не обеспечивается скрытность постановки, так как грязнозеленые парашюты мин в течение длительного времени висят в небе, имеются сложности с их затапливанием, велики ограничения в скорости минометания, парашютные системы увеличивают габариты мин.

    Приведенные недостатки вызвали необходимость создания мин, приближающихся по своим баллистическим характеристикам к авиационным бомбам. Поэтому обозначилось стремление уменьшить площадь парашютов мин или, по возможности, вообще от них избавиться, что, кстати, обеспечивало повышение точности постановки (если она осуществлялась с применением прицельных устройств, а не по расчету времени от какого-либо ориентира) и большую скрытность постановки. Некоторые причисляют к достоинствам уменьшение вероятности уничтожения мины на воздушном участке траектории, не задумываясь, следует ли производить минные постановки на виду у противника. Безусловно, аппаратура беспарашютных мин должна иметь повышенную ударостойкость, корпус снабжаться жестким стабилизатором, а глубину места применения приходится ограничивать.

    Отечественным проектирующим организациям принадлежит первенство идеи создания беспарашютных авиационных мин, хотя и не обошлось без некоторых накладок, поскольку разработанные в 1930 году мины MAH-1 и MAH-2, предназначенные для постановки с малых высот без парашютов, на вооружение так и не поступили.

    В начале 30-х годов в нашей стране была принята на вооружение первая авиационная мина ВОМИЗА. О ней подробно рассказывалось в №7/1999 г.

    На развитие минного оружия в предвоенные и военные годы оказало влияние начавшееся применение в минах неконтактных взрывателей, создававшихся на основе достижений электротехники, электроники и других областей науки. Необходимость в таких взрывателях вызывалась тем, что траление контактных мин сложности не представляло.

    Считается, что первый в России неконтактный взрыватель был предложен в 1909 году Авериным. Это был магнитоиндукционный дифференциальный взрыватель, предназначенный для якорных мин. Дифференциальная схема обеспечивала защиту взрывателя от срабатывания при качке мины.

    Использование неконтактных взрывателей позволяло увеличить интервал между минами в заграждении, осуществлять взрыв под днищем корабля, применять автономные донные мины, обладающие некоторыми преимуществами перед якорными. Тем не менее, к концу 20-х годов были сделаны лишь первые шаги в направлении создания подобных взрывателей.

    Принцип действия неконтактных взрывателей основан на использовании сигнала одного или нескольких физических полей, создаваемых кораблем: магнитного (прирост величины магнитного поля Земли за счет магнитной массы корабля), индукционного (явление электромагнитной индукции), акустического (преобразование акустических колебаний в электрические), гидродинамического (преобразование изменения давления в механический импульс), комбинированные. Существуют и другие типы неконтактных взрывателей, основанные на факторах другой природы.


    Авиационная якорная мина АМГ-1 (1939 г)

    1 – баллистический наконечник, 2 – якорь, 3 – амортизатор, 4 – корпус мины, 5 – крестообразный стабилизатор, 6 – тросы крепления стабилизатора и обтекателя к мине.


    Постановка мины АМГ-1


    Взрыватель, срабатывающий от внешнего поля, называется пассивным. Если же он имеет собственное поле и срабатывание его определяется взаимодействием собственного поля и цели, то такого типа взрыватель является активным.

    Разработка отечественных неконтактных взрывателей для мин и торпед началась в середине 20-х годов в отделе Всесоюзного энергетического института группой научных работников под руководством B.C. Кулебякина. Впоследствии работы продолжили другие организации.

    Первой неконтактной миной была речная индукционная неконтактная мина РЕМИН. Ее взрыватель приняли на вооружение в 1932 году, он обеспечивал взрыв мины после срабатывания первичного реле. Приемной частью взрывателя служила большая катушка из медной изолированной проволоки, замыкавшаяся на рамку специально сконструированного чувствительного гальванометрического реле. Мина предназначалась для постановки с надводных кораблей. Через три года мину снабдили более надежной аппаратурой, а в 1936 году, после усиления корпуса, под названием МИРАБ (мина индукционная речная авиационная бреющего полета) стали применять с самолетов в двух вариантах: как парашютную со средних высот и как беспарашютную с высот бреющего полета (согласно действующим документам этого периода бреющим считался полет на высотах от 5 до 50 м. Тем не менее, мина сбрасывалась со 100-150 м, что относится к малым высотам).

    В 1935 году разработали новый магнитоиндукционный взрыватель и малую неконтактную донную мину МИРАБ, заменившую первый образец. В мине впервые была использована двухимпульсная функциональная схема. Команда на подрыв мины поступала после двухкратного срабатывания принимающего устройства в течение цикла работы программного реле. Если второй импульс поступал через промежуток, превышающий время цикла реле, он воспринимался как первичный, и мина переводилась в режим ожидания. Двухимпульсный взрыватель обеспечивал более надежную защиту мины от взрыва при однократном воздействии на его принимающую часть и производил взрыв на более близком расстоянии от корабля, чем одноимпульсный.

    В 1941 году МИРАБ в очередной раз доработали, схему упростили, а заряд взрывчатого вещества увеличили. Этот вариант мины весьма ограниченно применялся в Отечественную войну.

    В 1932 году слушатель Военно- морской академии им. Ворошилова А.Б. Гейро в своем дипломном проекте предложил достаточно интересное техническое решение авиационной беспарашютной якорной гальваноударной мины. Ему предложили продолжить работу по реализации проекта в Научно- исследовательском минно-торпедном институте. К ней привлекли также группу специалистов Центрального конструкторского бюро (ЦКБ-36). Работа завершилась успешно, и в 1940 году на вооружение авиации ВМС была принята мина АМГ-1 (авиационная мина Гейро). Автора ее удостоили звания лауреата Сталинской премии. Мина допускала постановку с высот от 100 до 6000 м при скоростях 180-215 км/ч. Ее тротиловый заряд составлял 250 кг.

    Во время испытаний мины сбрасывали на лед Финского залива толщиной 70-80 см, они его уверенно пробивали и устанавливались на заданную глубину. Хотя по большому счету практического значения это не имело, так как парашюты оставались на поверхности льда. Мина была отработана на самолетах ДБ-3 и Ил-4.

    Мина АМГ-1 имела сфероцилиндрический корпус с пятью свинцовыми гальваноударными колпаками, внутри которого находился гальванический элемент в виде стеклянной ампулы с электролитом, цинковый и угольный электроды. При ударе корабля о мину колпак сминался, ампула разрушалась, срабатывал гальванический элемент, образующаяся электродвижущая сила вызывала ток в цепи запала и взрыв. На морских минах свинцовый колпак закрывался чугунным предохранительным колпаком, который удалялся после постановки мины. На мине АМГ-1 гальваноударные колпаки утапливались и выдвигались из гнезд корпуса пружинами после установки мины на заданное углубление.

    Корпус мины размещался на якоре обтекаемой формы с резиновой и деревянной амортизацией. Мина снабжалась стабилизатором и баллистическим наконечником, отделявшимися при приводнении. Мина устанавливалась на за данное углубление петлевым способом, всплывая с грунта.

    Работы над минами МИРАБ и РЕМИН, а также экспериментальные работы по созданию индукционных катушек с сердечниками из материалов с высокой магнитной проницаемостью, проведенные накануне Великой Отечественной войны в Севастополе, позволили в трудных военных условиях, несмотря на перебазирование промышленности и некоторых проектирующих организаций создать несравненно более совершенные образцы неконтактных донных мин АМД-500 и АМД-1000, которые в 1942 году поступили на вооружение ВМС и успешно использовались авиацией.

    Коллектив конструкторов (Матвеев, Эйгенборд, Будылин, Тимаков), испытатели Скворцов и Сухоруков (Научно-исследовательский минно-торпедный институт ВМС) этих мин были удостоены звания лауреатов Сталинской премии.

    Мина АМД-500 снабжена индукционным двухканальным взрывателем. Чувствительность взрывателя обеспечивала срабатывание мины под действием остаточного магнитного поля корабля на глубинах 30 м. Заряд взрывчатого вещества мины обеспечивал довольно существенное разрушение на расстояниях до 50 м.

    В том же году на вооружение частей минно-торпедной авиации ВМС поступила парашютная авиационная плавающая мина АПМ-1. Она предназначалась для постановки на реках при глубине постановки более 1,5 м с высот 500 м и более. Поскольку АПМ-1 имела вес всего лишь 100 кг, а взрывчатого вещества – 25 кг, то ее быстро сняли с вооружения.

    До 1939 года минно-торпедное оружие снаряжалось, главным образом, тротилом, и изыскивались рецептуры более мощных взрывчатых составов. В Военно-Морском Флоте работы вели несколько организаций. В 1938 году испытывалась смесь ГГ (смесь 60% тротила и 40% гексогена). По мощности взрыва состав превосходил тротил на 25%. Полигонные испытания также показали положительные результаты, и на этом основании в конце 1939 года приняли правительственное решение о применении нового вещества ГТ для снаряжения торпед и мин. Однако к этому времени выяснилось, что введение в состав алюминиевой пудры повышает мощность взрыва на 45-50 % в сравнении с тротилом. Такой эффект объяснили тем, что при взрыве алюминиевая пудра преобразуется в окись алюминия с выделением тепла. Лабораторные испытания показали, что оптимальна рецептура содержащая 60% тротила, 34% гексогена и 16% алюминиевой пудры. Смесь получила название ТГА.

    Все исследовательские работы по созданию и внедрению в нашей стране боеприпасов на снаряжение минно- торпедного оружия произведены группой специалистов ВМС под руководством П.П. Савельева.

    Во время войны боевые зарядные отделения торпед и неконтактных индукционных мин снаряжались только смесью ТГА. Именно такой смесью снаряжались и мины АМД. Для обеспечения взрыва под наиболее жизненными частями корабля мины снабжались специальным устройством, задерживающим взрыв на 4 секунды с момента начала работы программного реле. Батарея мины из шести элементов питала всю электросхему, имела выходные напряжения 4,5 или 9 вольт, ее емкость составляла 6 ампер-часов.


    Донная мина АМД-500


    Донное мина АМД-500 подвешена под ИЛ-4



    Бомбардировщик ИЛ-4 готовится к «лету с миной АМГ-1


    Парашютная система мины состояла из основного парашюта площадью 29 м² , тормозного (площадью 2 м²) и стабилизирующего, механизма сбрасывания для крепления и отделения парашюта от мины, прибора КАП-3 (часовой механизм и анероид для отделения стабилизирующего парашюта от мины и раскрытия парашютов на заданной высоте).

    В 1942 году разработали новый вариант мины АМД-2-500 с двухканальным взрывателем. Для экономии емкости источников энергопитания между индукционной катушкой и гальванометрическим реле включили усилитель, который вступал в работу только при поступлении сигнала от дежурного акустического канала, свидетельствующего о появлении сигнала от корабля. Подобная схема исключала возможность срабатывания индукционного взрывателя, имевшего высокую чувствительность, под воздействием магнитных бурь, поскольку он был обесточен.

    Мина АМД-2-500 снабжалась уже приборами срочности и кратности. Первый предназначался для приведения мины в боевое состояние по истечении определенного времени, а второе устройство позволяло производить установку на подрыв мины после определенного количества пропусков целей или же по первой цели после прихода мины в рабочее состояние. Установки срочности и кратности производились при подготовке мин к применению и в воздухе изменяться не могли.

    Подобные устройства применялись на поступавших из Англии минах A-IV и A-V. Основное отличие электросхемы мины A-V от мины A-IV состояло в том, что она имела двухимпульсную работу схемы и прибор кратности был заменен на прибор срочности. Двухимпульсность схемы обеспечивалась не электромеханическим путем, а введением в схему конденсатора двухимпульсности. Через 10-15 с мина приходила в готовность к срабатыванию от второго импульса. Срок годности мины определялся тем, что прибор срочности периодически через 2-6 мин подключался к батарее. Срок годности мины составлял 6-12 месяцев.

    Приборы срочности и кратности существенно повышали противотральную стойкость мин, одновременно защищая их от одиночных взрывов и серии. Защитный канал, срабатывая под действием сотрясения, испытываемого корпусом мины при близком взрыве, отключал от схемы акустический и индукционный каналы, и мина не реагировала.

    Мина АМД-2 проходила испытания на Каспийском море с декабря 1942 по июль 1943 г. и после некоторых доработок в январе 1945 г. принята на вооружение в вариантах АМД-2-500 и АМД-2-1000. Их по некоторым соображениям считали лучшими, но в Отечественной войне не применяли. За разработку мин Скворцов, Будылин и другие удостоились Государственных премий.

    Работы по дальнейшему усовершенствованию неконтактных мин продолжались, причем старались использовать их с различными комбинациями взрывателей.

    Представляет несомненный интерес сравнить разработки ВМС США этого периода с отечественными. Наиболее известны два образца мин: Мк.ХШ и Мк.ХИ мод. 1.

    Первая мина беспарашютная, неконтактная, индукционная, донная. Имеет корпус с неотделяемым стабилизатором. Вес мины 455-480 кг, взрывчатого вещества – 300-310 г. Диаметр корпуса – 0,5м, длина – 1,75 м. Максимальная высота сбрасывания – до 425 м, допустимая скорость – 230 км/ч. Схема взрывателя – двухимпульсная с возможностью увеличения до 9, кратность – до 8 циклов.

    Необычное состоит в том, что мина может применяться и как бомба. В этом случае ограничений по высоте сбрасывания нет. И еще одно оригинальное решение – индукционная катушка мины амортизирована и не соединена с ее корпусом. В электросхеме не используются конденсаторы. После того, как в приводнившейся мине растают две таблетки, срабатывают два гидростата (глубина постановки 4,6-27,5 м). Первый запускает часы предохранительного прибора, а второй – досылает запальный патрон в запальный стакан. Через некоторое время запитывалась электросхема и мина приводилась в боевое состояние.

    Мина Мк.ХМ разрабатывалась для подводных лодок, а ее модификация Мк.ХИ мод. 1 -для самолетов. Эталонная неконтактная парашютная мина длиной 3,3 м, диаметром 0,755 м, весом 755 кг, заряд взрывчатого вещества (тротил) – 515 кг, минимальная высота применения – 91,5 м. Обращают на себя особенности: американцы решили не тратить время на исследования и максимально использовали немецкие разработки. В конструкции широко применяются часовые механизмы, чтобы быстрее инициировать заряд взрывчатого вещества детонаторы расположили поперек него, мину снабдили надежной каучуковой амортизацией, что вызывало нарекания из-за большого расхода каучука. Мина оказалась чрезвычайно дорогой в производстве и обходилась в 2600 долларов (стоимость Мк.ХШ – 269 долларов). И еще одна немаловажная особенность мины: она являлась универсальной и могла применяться как с подводных лодок, так и с самолетов. Это достигалось тем, что парашют являлся самостоятельной деталью и крепился к мине с помощью болтов. Парашют мины круглый, площадью 28 м² с полюсным отверстием, снабжался вытяжным парашютом. Он укладывался в цилиндрическую коробку, прикрепленную парашютным замком немецкого образца.



    Разрез мины АМД-2М, приготовленной для внутренней подвески под самолет



    Разрез мины ИГДМ, приготовленной для внутренней подвески под самолет

    1 – корпус; 2 – котелок; 3 – парашютный кожух; 4 – стяжной пояс; 5 – парашютная система; 6 – индукционная катушка; 7 – гидродинамический приемник; 8 – батарейный блок; 9 – релейное устройство; 10 – предохранительный прибор; 11 – парашютный замок; 12 – запальный стакан; 13 – запальной патрон; 14 – дополнительный детонатор-15 – парашютный автомат КАП-3; 16 – осушители; 17 – бугели; 18 – вытяжной трос; 19 – трос «взрыв-невзрыв»


    После окончания войны работы над минным оружием продолжались, совершенствовались уже имевшиеся образцы и создавались новые.

    В мае 1950 г. приказом главнокомандующего ВМС на вооружение кораблей и авиации приняли индукционные гидродинамические мины АМД-4-500 и АМД-4-1000 (Главный конструктор Жаворонков). Они отличались от предшественниц повышенной противотральной стойкостью. С использованием немецкого трофейного гидродинамического приемника в 1954 году конструкторское бюро завода № 215 разработало впоследствии принятую на вооружение авиационную парашютную донную мину АМД-2М, выполненную в габаритах бомбы ФАБ-1500 (диаметр – 0,63 м, длина боевой мины при внутренней подвеске под самолет – 2,85 м, при наружной – 3,13 м, вес мины -1100- 1150 г).

    Мина АМД-2М, как это очевидно из названия, представляет собой усовершенствование мины АМД-2. При этом полностью были изменены конструкция корпуса, котелок и парашютная система. Ударно-гидростатический и гидростатические приборы заменены на один универсальный предохранительный прибор, усовершенствовано релейное устройство, схема взрывателя дополнена противотральной блокировкой. Взрыватель мины – двухканальный, акустико-индукционный. Взрыв мины или отработка одной кратности (на мине можно установить число холостых срабатываний прибора кратности от 0 до 20) происходит только при воздействии на приемники мины акустического и магнитного полей корабля.

    Новая парашютная система позволяла применять мины на скоростях полета до 750 км/ч и состояла из восьми парашютов: стабилизирующего, площадью 2 м² , тормозного – 4 м² и шести основных – по 4 м² каждый. Скорость снижения мины на стабилизирующем парашюте – 110-120 м/с, на основных парашютах – 30-35 м/с. Время отделения парашютной системы от мины после приводнения – 30-120 мин (время таяния сахара).

    В 1955 году на вооружение поступила авиационная малопарашютная плавающая мина АПМ, выполненная в габаритах бомбы ФАБ-1500. Мина является усовершенствованным вариантом противолодочной плавающей мины ПЛТ-2. Это контактная электроударная мина, автоматически удерживающая заданное углубление с помощью пневматического прибора плавания, предназначенная для применения в районах моря с глубинами свыше 15 м. Мина снабжена четырьмя взрывателями контактного действия, обеспечивающими ее взрыв при встрече с кораблем, имеющим ход не менее 0,5 узла. И если хотя бы один из взрывателей ломался, то происходил подрыв мины. Мина приводилась в боевое положение через 3,5-4,0 с после отделения от самолета и допускала установку на углубления от 2 до 7 м через один метр. В случае оборудования мины гидростатом «взрыв-потопление» минимальная глубина устанавливалась не менее 3 м. В случае падения на нетвердое препятствие, мелководье или при всплытии на поверхность моря на 30-90 с, следовал подрыв мины. Безопасность обращения с миной обеспечивалась тремя предохранительными приборами: инерционным, временным и гидростатическим. Парашютная система состояла из двух парашютов: стабилизирующего и основного.

    Принцип действия мины состоял в следующем. Через 3,5-4 с после отделения от самолета мина приводилась в состояние боевой готовности. Прибор срочности разарретировался, и часовой механизм приступал к отработке установленного времени. Инерционные предохранители подготавливались к срабатыванию от удара мины о воду в момент приводнения. Одновременно вытягивался стабилизирующий парашют, на котором мина снижалась до 1000 м над уровнем моря. На этой высоте срабатывал КАП-3, отделялся стабилизирующий парашют и вводился в действие основной, обеспечивающий снижение со скоростью 70-80 м/с. Если высота постановки оказывалась менее 1000 м, то основной парашют вводился в действие через 5 с после отделения от самолета.

    При ударе мины о воду отделялся и тонул носовой обтекатель, срабатывал инерционный замок парашютного кожуха и тонул вместе с парашютом, от блока батарей подавалось питание на прибор плавания.

    Мина, за счет срезанной под углом 30° носовой части, независимо от высоты сбрасывания уходила под воду на глубину до 15 м. С погружением на глубину 2,5-4 м срабатывал гидростатический включатель и подключал запальное устройство к электросхеме мины. Удержание мины на заданном углублении обеспечивалось прибором плавания, работающим на сжатом воздухе и электроэнергии. Для силового воздействия использовался сжатый воздух, а для управления механизмами, обеспечивающими плавание, – электроэнергия блока батарей. Запасы сжатого воздуха и источников электроэнергии обеспечивали возможность плавания мины на заданном углублении не менее 10 суток. По истечении срока плавания, установленного прибором срочности, мина самоуничтожалась (в зависимости от установки затапливалась или подрывалась).

    Мина снабжалась несколько отличающимися парашютными системами. До 1957 года применялись парашюты, усиленные капроновыми прокладками. Впоследствии прокладки исключили, и время снижения мины несколько уменьшилось.

    В 1956-1957 гг. на вооружение было принято еще несколько образцов авиационных мин: ИГДМ, «Лира», «Серией», ИГДМ-500, РМ-1, УДМ, МТПК-1 и др.

    Специальная авиационная мина ИГДМ (индукционная гидродинамическая мина) выполнена в габаритах бомбы ФАБ-1500. Она может применяться с самолетов, производящих полет на скоростях до 750 км/ч. Комбинированный индукционно-гидродинамический взрыватель после прихода мины в боевое положение переводился в постоянную готовность к приему импульса магнитного поля корабля. Гидродинамический канал подключался только после поступления сигнала определенной продолжительности от индукционного канала. Считалось, что подобная схема придает мине высокую противотральную стойкость.



    Мина Серпей, подготовленная к подвеске под самолет..Ту-14Т



    Мина «Лира»



    Разрез авиационной якорной неконтактной мины «Лира»

    1 – якорь; 2 – барабан с минрепом; 3 – баллистический наконечник; 4 – часовой механизм; 5 – электрическая батарея; 6 – неконтактный взрыватель; 7 – парашют; 8 – контактный взрыватель; 9 – приемник защитного канала; 10 – приемник боевого канала; 11 – приемник дежурного канала; 12 – прибор самоликвидации; 13 – заряд взрывчатого вещества; 14 – запальное устройство


    Под воздействием ЭДС, наводимой в индукционной катушке мины при прохождении над ней корабля, возникает ток, и электрическая схема готовится к приему импульса гидродинамического поля корабля. Если его импульс в течение расчетного времени не подействовал, то по окончании цикла работы схема мины приходит в исходное боевое положение. Если мина получала импульс гидродинамического поля меньше расчетной продолжительности, то схема приходила в исходное положение; если воздействие было достаточно продолжительным, то отрабатывался холостой цикл или производился подрыв мин (в зависимости от установок). Мина снабжалась также прибором срочности.

    Действие парашютной системы мины, сброшенной с высот, превышающих 500 м, происходит в следующей последовательности. После отделения от самолета выдергивается чека парашютного автомата КАП-3 и вытягивается стабилизирующий парашют, на котором мина снижается с вертикальной скоростью 110-120 м/с до 500 м. На этой высоте анероид КАП-3 освобождает часовой механизм, через 1-1,5 с парашют с кожухом отделяются от мины и одновременно выталкивается камера с тормозным и основными парашютами. Тормозной парашют раскрывается, вертикальная скорость снижения мины уменьшается, вступает в работу часовой механизм, из чехлов извлекаются и раскрываются основные парашюты. Скорость снижения уменьшается до 30-35 м/с.

    При постановке мины с минимально допустимой высоты парашютный кожух от мины отделяется на меньшей высоте, а вся система срабатывает так же, как и при постановке с больших высот. Парашютные системы мин ИГДМ и АМД-2М аналогичны по конструкции.

    Авиационная якорная неконтактная мина «Лира» поступила на вооружение в 1956 году. Она выполнена в габаритах бомбы ФАБ-1500, снабжена трехканальным акустическим неконтактным взрывателем, а также четырьмя контактными взрывателями. Неконтактный взрыватель имел три приемника акустических колебаний. Дежурный приемник предназначался для постоянного прослушивания и по достижении определенной величины сигнала включал в работу два других канала; защитный и боевой. Защитный канал с ненаправленным акустическим приемником блокировал цепь срабатывания неконтактных взрывателей. Акустический приемник боевого канала имел острую характеристику, направленную к поверхности воды. В случае превышения уровня акустического сигнала (по величине тока) над уровнем защитного канала реле замыкало цепь запального устройства, и происходил взрыв.

    Неконтактные взрыватели подобного типа в дальнейшем использовались в других образцах якорных и донных мин.

    Мина могла устанавливаться на глубинах от 2.5 до 25 м, на заданное углубление от 2 до 25 м, всплывая с грунта (петлевой способ).

    Донная неконтактная мина «Серпей» (столь необычным названием она обязана ошибке машинистки при перепечатке, мина должна была назваться «Персей») также выполнена в габаритах бомбы ФАБ-1500 и предназначена для постановки самолетами и кораблями в районах моря с глубинами от 8 до 50 м. Мина снабжена индукционно-акустическим взрывателем, использующим магнитное и акустическое поля движущегося корабля.

    Постановка мины с самолета производится при помощи двухступенчатой парашютной системы. Стабилизирующий парашют вытягивается сразу после отделения от самолета, по достижении высоты 1500 м автомат КАП-Зт раскрывает тормозной парашют. После приводнения и отработки предохранительных устройств схема взрывателя приходит в боевое состояние.



    Авиационная мина ИГДМ-500

    1 – гидродинамический приемник; 2 – парашютная система; 3 – хомут; 4 – прибор уничтожения авиационных мин; 5 – баллистический наконечник; 6 – запальный стакан; 7 – капсюль М; 8 – корпус; 9 – индукционная катушка; 10 – резиновый бандаж



    Авиационная реактивно-всплывающая мина РМ-1

    1,2 – якорь; 3 – реактивный двигатель; 4 – блок питания; 5 – гидростатический датчик; 6 – предохранительный прибор; 7 – парашютный кожух; 8 – заряд взрывчатого вещества; 9 – барабан с минрепом


    В результате проведенных работ удалось существенно повысить противотральную стойкость мин.

    Главный конструктор мины Ф.Н. Соловьев.

    Мина ИГДМ-500 донная, неконтактная, двухканальная, индукционно-гидродинамическая, авиационная и корабельная, по величине заряда – малая. Мина ставится с самолетов на глубинах 8-30 м. Разработана в габаритах бомбы ФАБ-500 (диаметр – 0,45 м, длина – 2,9 м).

    Постановка мины ИГДМ-500 (главный конструктор мины С.П. Вайнер) производится с использованием двухступенчатой парашютной системы, состоящей из стабилизирующего парашюта типа ВГП (вращающийся грузовой парашют) площадью 0,2 м² и такого же типа основного парашюта площадью 0,75 м² . На стабилизирующем парашюте мина снижается до 750 м – высоты срабатывания прибора КАП-3. Прибор срабатывает и приводит в действие рычажную систему парашютного кожуха. Рычажная система освобождает чехол тормозного парашюта с закрепленным стабилизирующим парашютом, отделяется от мины и снимает чехол с тормозного парашюта, на котором она и снижается до приводнения. В момент приводнения тормозной парашют потоком воды отрывается и тонет, а мина уходит на грунт. Отделившийся стабилизирующий парашют при попадании в воду тонул.

    После срабатывания установленных в мину предохранительных приборов контакты замыкаются и подключают к схеме неконтактного взрывателя все батареи питания. Через 1-3 ч (в зависимости от глубины места постановки) мина приходит в опасное состояние.

    Увеличение чувствительности неконтактных взрывателей при ограниченном заряде взрывчатого вещества не давало большого эффекта. Исходя из этого, пришли к мысли о необходимости приближения заряда к обнаруженной цели с тем, чтобы наиболее полно использовать его возможности. Таким образом, появилась идея отделения мины от якоря, на котором она находилась в положении ожидания, при поступлении сигнала о появлении цели. С тем, чтобы решить подобную задачу, следовало обеспечить всплытие мины в кратчайшее время с глубины, на которой она установлена. Для этого в наибольшей степени подходил твердотопливный ракетный двигатель, использующий нитроглицериновый порох НМФ-2, который устанавливался на реактивной авиационной торпеде РАТ-52. При весе всего 76 кг он почти мгновенно приводился в действие, работал 6-7 с, развивая в воде тягу 2150 кгс/с. Правда, вначале имелись сомнения относительно надежности работы двигателя на глубине 150-200 м, пока не убедились в их необоснованности – двигатель работал надежно.

    Исследования, начатые в 1947 году, завершились успешно, и корабельный вариант реактивно-всплывающей мины КРМ поступил на вооружение кораблей флота. Работы продолжили и в 1960 году на вооружение авиации ВМФ приняли якорную реактивно-всплывающую мину РМ-1. Главный конструктор мины Л.П. Матвеев. Мину РМ-1 изготовили большой серией.

    Мина РМ-1 выполнена в габаритах бомбы ФАБ-1500, однако вес ее составляет 900 кг при длине 2855 мм и величине заряда 200 кг.

    Запуск двигателя мины и ее всплытие обеспечивались по сигналу гидролокационного неконтактного отделителя при прохождении над миной надводного корабля или подводной лодки. Мина снабжена двухступенчатой парашютной системой, обеспечивающей ее применение с высоты 500 м и выше. После отделения от самолета раскрывается стабилизирующий вращающийся парашют площадью 0,3 м 2 , и мина снижается с вертикальной скоростью 180 м/с до срабатывания прибора КАП-ЗМ-240, который устанавливается на высоту 750 м. На этой высоте происходит раскрытие тормозного вращающегося парашюта площадью 1,8 м 2 , уменьшающего скорость снижения до 50-65 м/с.

    При входе в воду парашютная система отделяется и тонет, а корпус, соединенный с якорем, погружается. При этом мина может выставляться на глубинах от 40 до 300 м. Если глубина моря в районе постановки меньше 150 м, то мина занимает придонное положение на минрепе длиной 1-1,5 м. Если глубина моря составляет 150-300 м, то мина устанавливается на расстоянии от поверхности 150 м. Отделение Мины от якоря при глубине моря до 150 м происходит с помощью временного механизма, на больших глубинах – при срабатывании мембранного гидростата.

    После отделения от якоря и установки на заглубление мина приходит в рабочее положение по отработке прибора срочности, обеспечивающего возможность установки от 1 ч до 20 суток. Если же он устанавливался на нуль, то мина сразу приходила в опасное положение. Акустический приемоизлучатель, расположенный в верхней части корпуса мины, периодически посылал ультразвуковые импульсы к поверхности, образуя «пятно опасности» диаметром 20 м. Отраженные одиночные импульсы возвращались в приемную часть. Если какой-либо импульс приходил раньше отраженного от поверхности в приемную систему возвращались парные импульсы с интервалами, равными разности расстояний. После прихода трех пар двойных импульсов устройство неконтактного отделения запускало реактивный двигатель. Корпус мины отделялся от якоря, и под действием двигателя она всплывала со средней вертикальной скоростью 20- 25 м/с. На этом этапе неконтактный взрыватель сравнивал замеренное расстояние с фактическим углублением мины и по достижении уровня цели подрывал ее.

    Современные авиационные донные мины семейства МДМ снабжены трехканальным взрывателем, приборами срочности и кратности, характеризуются высокой противотральной стойкостью. Они модифицированы по типу постановщика.

    Минное оружие морской авиации, оставаясь стабильным по основным элементам структуры, продолжает совершенствоваться на уровне отдельных образцов. Это достигается путем модернизации и разработки новых образцов с учетом изменившихся требований к этому виду оружия.


    Александр Широкорад

    Что такое морские мины и торпеды? Как они устроены и каковы принципы их действия? Являются ли в настоящее время мины и торпеды таким же грозным оружием как и во времена прошедших войн?

    Обо всем этом рассказывается в брошюре.

    Она написана по материалам открытой отечественной и зарубежной печати, а вопросы использования и развития минно-торпедного оружия изложены по взглядам иностранных специалистов.

    Адресуется книга широкому кругу читателей, особенно молодежи, готовящейся к службе в Военно-Морском Флоте СССР.

    Разделы этой страницы:

    Современные мины и их устройство

    Современная морская мина - это сложное конструктивное устройство, автоматически действующее под водой.

    Мины могут выставляться с надводных кораблей, подводных лодок и самолетов на путях движения кораблей, у портов и баз противника. "Некоторые мины ставятся на дне моря (рек, озер) и могут быть приведены в действие кодовым сигналом.

    Наиболее сложными считаются самодвижущиеся мины, в которых используются положительные свойства якорной мины и торпеды. Они имеют устройства для обнаружения цели, отделения торпеды от якоря, наведения на цель и подрыва заряда неконтактным взрывателем.

    Различают три класса мин: якорные, донные и плавающие.

    Якорные и донные мины служат для создания неподвижных минных заграждений.

    Плавающие мины обычно применяются на речных театрах для поражения расположенных вниз по течению реки мостов и переправ противника, а также его кораблей и плавучих средств. Они могут применяться и на море, но при условии, что поверхностное течение направлено в район базирования противника. Существуют и плавающие самодвижущиеся мины.

    Мины всех классов и типов имеют заряд обычного взрывчатого вещества (тротил) весом от 20 до нескольких сот килограммов. Они могут оснащаться и ядерными зарядами.

    В зарубежной печати, например, сообщалось, что ядерный заряд с тротиловым эквивалентом в 20 кт способен на расстоянии до 700 м наносить сильные разрушения, топить или выводить из строя авианосцы и крейсеры, а на расстоянии до 1400 м наносить повреждения, значительно снижающие боеспособность этих кораблей.

    Взрыв мин вызывается взрывателями, которые бывают двух типов - контактные и неконтактные.

    Контактные взрыватели срабатывают от непосредственного соприкосновения корпуса корабля с миной (ударные мины) или с ее антенной (взрыватель электроконтактного действия). Ими, как правило, оснащаются якорные мины.

    Неконтактные взрыватели срабатывают от воздействия на них магнитного или акустического поля корабля или от комбинированного воздействия этих двух полей. Они чаще служат для подрыва донных мин.

    Тип мины обычно определяется типом взрывателя. Отсюда мины подразделяются на контактные и неконтактные.

    Контактные мины бывают ударные и антенные, а неконтактные -"акустические, магнитно-гидродинамические, акустико-гидродинамические и др.

    Якорные мины

    Якорная мина (рис. 2) состоит из водонепроницаемого корпуса диаметром от 0,5 до 1,5 м, минрепа, якоря, взрывающих приспособлений, предохранительных устройств, обеспечивающих безопасность обращения с миной при приготовлении ее на палубе корабля к постановке и при сбрасывании в воду, а также из механизмов, устанавливающих мину на заданное углубление.

    Корпус мины может быть шаровидной, цилиндрической, грушевидной или другой обтекаемой формы. Он делается из стальных листов, стеклопластиков и других материалов.

    Внутри корпуса имеется три отделения. Одно из них представляет собой воздушную полость, которая обеспечивает положительную плавучесть мины, необходимую для удержания мины на заданном углублении от поверхности моря. В другом отделении помещаются заряд и детонаторы, а в третьем - различные приборы.

    Минреп представляет собой стальной трос (цепь), который, наматывается на вьюшку (барабан), установленную на якоре мины. Верхний конец минрепа крепится к корпусу мины.

    В собранном и приготовленном к постановке виде мина лежит на якоре.

    Якоря мин металлические. Их делают в виде чашки или тележки с роликами, благодаря которым мины могут легко передвигаться по рельсам или по гладкой стальной палубе корабля.

    Якорные мины приводятся в действие посредством различных контактных и неконтактных взрывателей. Контактные взрыватели чаще всего бывают гальваноударные, ударно-электрические и ударно-механические.

    Гальваноударные и ударно-электрические взрыватели устанавливаются также в некоторых донных минах, которые ставятся в прибрежной мелководной полосе специально против высадочных средств противника. Такие мины принято называть противодесантными.


    1 - предохранительный прибор; 2 - гальваноударный взрыватель; 3-запальный стакан; 4- зарядная камера

    Основными деталями гальванических взрывателей являются свинцовые колпаки, внутри которых помещаются стеклянные баллоны с электролитом (рис. 3), и гальванические элементы. Колпаки располагаются на поверхности корпуса мины. От удара о корпус корабля свинцовый колпак сминается, баллон разбивается и электролит попадает на электроды (угольный - положительный, цинковый - отрицательный). В гальванических элементах появляется ток, который от электродов попадает в электрозапал и приводит его в действие.

    Свинцовые колпаки закрыты чугунными предохранительными колпаками, которые автоматические сбрасываются пружинами после постановки мины.

    Ударно-электрические взрыватели приводятся в действие ударно-электрическим способом. В мине с такими взрывателями выступают несколько металлических стержней, которые от удара о корпус корабля изгибаются или вдвигаются внутрь, подключая запал мины к электрической батарее.

    В ударно-механических взрывателях взрывающим приспособлением является ударно-механический прибор, который приводится в действие от удара о корпус корабля. От сотрясения во взрывателе происходит смещение инерционного груза, удерживающего подпружинную рамку с бойком. Освободившийся боек накалывает капсюль запального устройства, которое приводит в действие заряд мины.

    Предохранительные устройства, как правило, состоят из сахарных или гидростатических разъединителей, либо тех и других вместе взятых.



    1 - чугунный предохранительный колпак; 2 - пружина для сбрасывания предохранительного колпака после постановки мины; 3 - свинцовый колпак с гальваническим элементом; 4 - стеклянный баллон с электролитом; 5 - угольный электрод; 6 - цинковый электрод; 7 - изоляционная шайба; 8 - проводники от угольного и цинкового электродов

    Сахарный разъединитель представляет собой кусок сахара, вставляемый между дисками пружинного контакта. При вставленном сахаре цепь взрывателя разомкнута.

    В воде сахар через 10-15 мин растворяется, и пружинный контакт, замыкая цепь, делает мину опасной.

    Гидростатический разъединитель (гидростат) препятствует соединению дисков пружинного контакта или смещению инерционного грузика (в ударно-механических минах), пока мина находится на корабле. При погружении от давления воды гидростат освобождает пружинный контакт или инерционный грузик.



    А - заданное углубление мины; I - минреп; II - якорь мины; 1 - мина сброшена; 2 - мина тонет; 3- мина на грунте; 4-минреп сматывается; 5-мина установилась на заданной глубине

    По способу постановки якорные мины делятся на всплывающие со дна [* Этот способ постановки якорных мин был предложен адмиралом Макаровым С О. в 1882 г.] и устанавливаемые с поверхности [** Способ постановки мин с поверхности был предложен лейтенантом Черноморского флота Азаровым Н. Н. в 1882 г.].



    h - заданное углубление мины; I-якорь мины; II -штерт; III-груз; IV - минреп; 1-мина сброшена; 2 - мина отделилась от якоря, минреп свободно сматывается с вьюшки; 3. 4- мина на поверхности, минреп продолжает сматываться; 5 - груз дошел до грунта, минреп перестал сматываться; 6 - якорь тянет мину вниз и устанавливает на заданной глубине, равной длине штерта

    При постановке мины со дна барабан с минрепом составляет одно целое с корпусом мины (рис. 4).

    Мина скреплена с якорем стропами из стального троса, которые не позволяют ей отделиться от якоря. Стропы одним концом закреплены наглухо к якорю, а другим концом пропущены через специальные ушки (обухи) в корпусе мины и затем присоединены к сахарному разъединителю в якоре.

    При постановке после падения в воду мина вместе с якорем идет на дно. Через 10-15 мин сахар растворяется, освобождает стропы и мина начинает всплывать.

    Когда мина придет на заданное углубление от поверхности воды (h), гидростатический прибор, расположенный около барабана, застопорит минреп.

    Вместо сахарного разъединителя может применяться часовой механизм.

    Постановка якорных мин с поверхности воды осуществляется следующим образом.

    На якоре мины помещается вьюшка (барабан) с намотанным на нее минрепом. К вьюшке прикрепляется специальный стопорящий механизм, соединенный посредством штерта (шнура) с грузом (рис. 5).

    Когда мину сбрасывают за борт, она вследствие запаса плавучести держится на поверхности воды, якорь же отделяется от нее и тонет, разматывая минреп с вьюшки.

    Перед якорем движется груз, закрепленный на штерте, длина которого равняется Заданному углублению мины (h). Груз первым касается дна и тем"самым дает некоторую слабину штерту. В этот момент срабатывает стопорящий механизм и разматывание минрепа прекращается. Якорь же продолжает движение на дно, увлекая за собой мину, которая погружается на углубление, равное длине штерта.

    Данный способ постановки мин еще называют штерто-грузовым. Он получил широкое распространение во многих флотах.

    По весу заряда якорные мины подразделяют на малые, средние и большие. Малые мины имеют заряд весом 20-100 кг. Они применяются против небольших кораблей и судов в районах с глубиной до 500 м. Небольшие размеры мин позволяют принимать их на минные заградители по нескольку сотен штук.

    Средние мины с зарядами 150-200 кг предназначаются для борьбы с кораблями и судами среднего водоизмещения. Длина их минрепа достигает 1000-1800 м.

    Большие мины имеют вес заряда 250 -300 кг и более. Они предназначены для действий против крупных кораблей. Имея большой запас плавучести, эти мины позволяют наматывать на вьюшку длинный минреп. Это дает возможность ставить мины в районах с глубиной моря более 1800 м.

    Антенные мины представляют собой обычные якорные ударные мины, имеющие электроконтактные взрыватели. Их принцип работы основан на свойстве неоднородных металлов, например цинка и стали, помещенных в морскую воду, создавать разность потенциалов. Эти мины используются главным образом для борьбы с подводными лодками.

    Антенные мины ставятся на углубление около 35 м и снабжаются верхней и нижней металлическими антеннами длиной примерно 30 м каждая (рис. 6).

    Верхняя антенна удерживается в вертикальном положении при помощи буйка. Заданное углубление буйка не должно быть больше осадки надводных кораблей противника.

    Нижний же конец нижней антенны скрепляется с минрепом мины. Концы антенн, обращенные к мине, соединяются между собой проводом, который проходит внутрь корпуса мины.

    Если подводная лодка столкнется непосредственно с миной, то она подорвется на ней так же, как и на якорной ударной мине. Если же подводная лодка коснется антенны (верхней или нижней), то в проводнике возникнет ток, он поступает на чувствительные приборы, подключающие электрозапал к постоянному источнику тока, размещенному в мине и имеющему достаточную мощность, чтобы привести электрозапал в действие.

    Из сказанного видно, что антенные мины перекрывают верхний слой воды толщиной около 65 м. Чтобы увеличить толщину этого слоя, ставят вторую линию антенных мин на большее углубление.

    На антенной мине может подорваться и надводный корабль (судно), однако взрыв обычной мины на расстоянии 30 м от киля значительных разрушений не приносит.


    Зарубежные специалисты считают, что допустимая техническим устройством якорных ударных мин наименьшая глубина постановки составляет не менее 5 м. Чем ближе мина к поверхности моря, тем больше эффект ее взрыва. Поэтому в заграждениях, предназначенных против больших кораблей (крейсеров, авианосцев), эти мины рекомендуется ставить с заданным углублением в 5-7 м. Для борьбы с малыми кораблями углубление мин не превышает 1-2 м. Такие постановки мин опасны даже для катеров.

    Но мелко поставленные минные заграждения легко обнаруживаются самолетами и вертолетами и, кроме того, быстро разрежаются (разносятся) под действием сильного волнения, течения и дрейфующего льда.

    Срок боевой службы контактной якорной мины ограничен в основном сроком службы минрепа, который ржавеет в воде и теряет свою прочность. При волнении он может оборваться, так как сила рывков на минреп у малых и средних мин достигает сотен килограммов, а у больших мин - нескольких тонн. На живучесть минрепов и особенно на места их крепления с миной влияют также и приливно-отливные течения.

    Зарубежные специалисты считают, что в незамерзающих морях и в районах моря, которые прикрываются островами или конфигурацией берега от волнения, вызываемого господствующими ветрами, даже мелко поставленное минное заграждение может простоять без особого разрежения 10-12 месяцев.

    Медленнее всего разрежаются глубоко поставленные минные заграждения, предназначенные для борьбы с подводными лодками, идущими в подводном положении.

    Контактные якорные мины отличаются простотой конструкции и дешевизной изготовления. Однако они имеют два существенных недостатка. Во-первых, мины должны иметь запас положительной плавучести, что ограничивает вес размещенного в корпусе заряда, а следовательно, и эффективность применения мин против больших кораблей. Во-вторых, такие мины легко могут быть подняты на поверхность воды любыми механическими тралами.

    Опыт боевого применения контактных якорных мин в первую мировую войну показал, что они не полностью удовлетворяли требованиям борьбы с кораблями противника: из-за малой вероятности встречи корабля с контактной миной.

    Кроме того, корабли, сталкиваясь с якорной миной, уходили обычно с ограниченными повреждениями носовой или бортовой части корабля: взрыв локализировался прочными переборками, водонепроницаемыми отсеками или броневым поясом.

    Это привело к мысли создать новые взрыватели, которые могли бы чувствовать приближение корабля на значительном расстоянии и взрывать мину в тот момент, когда корабль будет находиться в опасной зоне от нее.

    Создание таких взрывателей стало возможным лишь после того, как были открыты и изучены физические поля корабля: акустическое, магнитное, гидродинамическое и др. Поля как бы увеличивали осадку и ширину подводной части корпуса и при наличии на мине специальных приборов позволяли получать сигнал о приближении корабля.

    Взрыватели, срабатывающие от воздействия того или иного физического поля корабля, назвали неконтактными. Они позволили создать донные мины нового типа и обеспечили возможность использования якорных мин для постановки в морях с большими приливами и отливами, а также в районах с сильным течением.

    В этих случаях якорные мины с неконтактными взрывателями допускают постановку на таком углублении, что при отливах их корпуса не всплывают на поверхность, а при приливах мины остаются опасными для проходящих над ними кораблей.

    Действия же сильных течений и приливов только несколько приглубляют корпус мины, но ее взрыватель все равно чувствует приближение корабля и взрывает мину в нужный момент.

    По устройству якорные неконтактные мины сходны с якорными контактными минами. Отличие их состоит только в конструкции взрывателей.

    Вес заряда неконтактных мин составляет 300- 350 кг, а постановка их, по мнению иностранных специалистов, возможна в районах с глубиной 40 м и более.

    Неконтактный взрыватель срабатывает на некотором расстоянии от корабля. Это расстояние называют радиусом чувствительности взрывателя или неконтактной мины.

    Настраивают неконтактный взрыватель так, чтобы радиус его чувствительности не превышал радиуса разрушительного действия взрыва мины на подводную часть корпуса корабля.

    Неконтактный взрыватель устроен таким образом, что при подходе корабля к мине на расстояние, соответствующее радиусу ее чувствительности, происходит механическое замыкание контакта в боевой цепи, в которую подключен запал. В результате происходит взрыв мины.

    Что же представляют собой физические поля корабля?

    Магнитное поле, например, имеется у каждого стального корабля. Напряженность этого поля зависит главным образом от количества и состава металла, из которого построен корабль.

    Появление же магнитных свойств у корабля обусловлено наличием магнитного поля Земли. Поскольку магнитное поле Земли неодинаково и меняется по величине с изменением широты места и курса корабля, то и магнитное поле корабля при плавании изменяется. Его принято характеризовать напряженностью, которую измеряют в эрстедах.

    При приближении корабля, обладающего магнитным полем, к магнитной мине в последней вызывается колебание установленной во взрывателе магнитной стрелки. Отклоняясь от исходного положения, стрелка замыкает контакт в боевой цепи, и мина взрывается.

    При движении корабль образует акустическое поле, которое создается главным образом шумом вращающихся винтов и работой многочисленных механизмов, размещенных внутри корпуса корабля.

    Акустические колебания механизмов корабля создают суммарное колебание, воспринимаемое в виде шума. Шумы кораблей разных типов имеют свои особенности. У быстроходных кораблей, например, более интенсивно выражены высокие частоты, у тихоходных (транспортов) - низкие частоты.

    Шум от корабля распространяется на значительное расстояние и создает вокруг него акустическое поле (рис. 7), которое и является средой, где срабатывают неконтактные акустические взрыватели.

    Специальное устройство такого взрывателя, например угольный гидрофон, преобразует воспринимаемые колебания звуковой частоты, создаваемые кораблем, в электрические сигналы.

    Когда сигнал достигает определенной величины, это значит, что корабль вошел в зону действия неконтактной мины. Через вспомогательные приборы электробатарея подключается на запал, который и приводит в действие мину.

    Но угольные гидрофоны прослушивают шумы только в диапазоне звуковых частот. Поэтому для приема частот ниже и выше звуковой используются специальные акустические приемники.



    Акустическое поле распространяется на гораздо большее расстояние, чем магнитное. Следовательно, представляется возможным создавать акустические взрыватели с большой зоной действия. Вот почему во вторую мировую войну большинство неконтактных взрывателей работало на акустическом принципе, а в комбинированных неконтактных взрывателях одним из каналов всегда был акустический.

    При движении корабля в водной среде создается так называемое гидродинамическое поле, под которым подразумевается уменьшение гидродинамического давления во всем слое воды от днища корабля до дна моря. Это уменьшение давления является следствием вытеснения массы воды подводной частью корпуса корабля, а также возникает.как результат волнообразования под килем и за кормой быстро движущегося корабля. Так, например, крейсер водоизмещением около 10 000 т, идущий со скоростью 25 уз (1 уз = 1852 м/ч), в районе с глубиной моря 12-15 м создает понижение давления на 5 мм вод. ст. даже на расстоянии до 500 м справа и слева от себя.

    Было установлено, что величины гидродинамических полей у различных кораблей различны и зависят в основном от скорости хода и водоизмещения. Кроме того, с уменьшением глубины района, в котором движется корабль, создаваемое им придонное гидродинамическое давление увеличивается.

    Для улавливания изменения гидродинамического поля служат специальные приемники, которые реагируют на определенную программу смены повышенного и пониженного давлений, наблюдающихся при прохождении корабля. Эти приемники входят в состав гидродинамических взрывателей.

    При изменении гидродинамического поля в определенных пределах смещаются контакты и замыкают электрическую цепь, приводящую в действие взрыватель. В результате происходит взрыв мины.

    Считается, что приливно-отливные течения и волны могут создавать значительные изменения гидростатического давления. Поэтому для защиты мин от ложного срабатывания при отсутствии цели гидродинамические приемники обычно применяют в комбинации с неконтактными взрывателями, например, акустическими.

    Комбинированные неконтактные взрыватели применяются в минном оружии довольно широко. Это вызвано рядом причин. Известно, например, что чисто магнитные и акустические донные мины сравнительно легко вытраливаются. Применение же комбинированного акустико-гидродинамического взрывателя значительно усложняет процесс траления, так как для этих целей требуются акустические и гидродинамические тралы. Если же на тральщике один из этих тралов выйдет из строя, то мина не будет вытралена и может взорваться при прохождении корабля над ней.

    Для затруднения вытраливания неконтактных мин, помимо комбинированных неконтактных взрывателей, применяются специальные приборы срочности и кратности.

    Прибор срочности, снабженный часовым механизмом, может быть установлен на срок действия от нескольких часов до нескольких суток.

    До истечения срока установки прибора неконтактный взрыватель мины в боевую цепь не включится и мина не взорвется даже при прохождении корабля над ней или действии трала.

    В такой обстановке противник, не зная установки приборов срочности (а она может быть различной в каждой мине), не сможет определить, до каких пор необходимо тралить фарватер, чтобы корабли смогли выйти в море.

    Прибор кратности начинает срабатывать только по истечении срока установки прибора срочности. Он может быть установлен на одно или несколько прохождений корабля над миной. Чтобы взорвать такую мину, кораблю (тралу) нужно пройти над ней столько раз, какова установка кратности. Всё это значительно усложняет борьбу с минами.

    Неконтактные мины могут взрываться не только от рассмотренных физических полей корабля. Так, в зарубежной печати сообщалось о возможности создания неконтактных взрывателей, основу которых могут составлять высокочувствительные приемники, способные реагировать на изменения температуры и состава воды во время прохождения кораблей над миной, на светооптические изменения и т. п.

    Считается, что физические поля кораблей содержат еще много неизученных свойств, которые могут быть познаны и применены в минном деле.

    Донные мины

    Донные мины обычно неконтактные. Они, как правило, имеют форму закругленного с обоих концов водонепроницаемого цилиндра длиной около 3 м и диаметром около 0,5 м.

    Внутри корпуса такой мины размещается заряд, взрыватель и другое необходимое оборудование (рис. 8). Вес заряда донной неконтактной мины составляет 100- 900 кг.



    / - заряд; 2 - стабилизатор; 3 - аппаратура взрывателя

    Наименьшая глубина постановки донных неконтактных мин зависит от их устройства и составляет несколько метров, а наибольшая, когда эти мины используются против надводных кораблей, не превышает 50 м.

    Против подводных лодок, идущих в подводном положении на небольшом расстоянии от грунта, донные неконтактные мины ставятся в районах с глубинами моря более 50 м, но не глубже предела, обусловленного прочностью корпуса мины.

    Взрыв донной неконтактной мины происходит под днищем корабля, где обычно не имеется противоминной защиты.

    Считается, что такой взрыв наиболее опасен, так как он вызывает как местные повреждения днища, ослабляющие прочность корпуса корабля, так и общий изгиб днища вследствие неравномерной интенсивности воздействия по длине корабля.

    Надо сказать, что пробоины в этом случае по размерам оказываются больше, чем при взрыве мины у борта, что приводит к гибели корабля.-

    Донные мины в современных условиях нашли очень широкое применение и привели к некоторому вытеснению якорных мин. Однако при постановке на глубинах более 50 м они требуют очень большого заряда взрывчатого вещества.

    Поэтому для больших глубин все еще применяются обычные якорные мины, хотя они и не имеют таких тактических преимуществ, которыми обладают донные неконтактные мины.

    Плавающие мины

    Современные плавающие (самотранспортирующиеся) мины автоматически управляются приборами различного устройства. Так, одна из американских подлодочных автоматически плавающих мин имеет прибор плавания.

    Основу этого прибора составляет электродвигатель, вращающий в воде гребной винт, расположенный в нижней части мины (рис. 9).

    Работой электродвигателя управляет гидростатический прибор, который действует от; внешнего давления воды и периодически подключает аккумуляторную батарею к электродвигателю.

    Если мина опускается на глубину больше той, которая установлена на приборе плавания, то гидростат включает электродвигатель. Последний вращает гребной винт и заставляет мину подвсплывать до заданного углубления. После этого гидростат выключает питание двигателя.


    1 - взрыватель; 2 - заряд взрывчатого вещества; 3 - аккумуляторная батарея; 4- гидростат управления электродвигателем; 5 - электродвигатель; 6 - гребной винт прибора плавания

    Если же мина будет продолжать всплывать, то гидростат вновь включит электродвигатель, но в этом случае гребной винт будет вращаться в обратную сторону и заставит мину углубиться. Считается, что точность удержания такой мины на заданном углублении может быть достигнута ±1 м.

    В послевоенные годы в США на базе одной из электрических торпед была создана самотранспортирующаяся мина, которая после выстреливания движется в заданном направлении, погружается на дно и затем действует как донная мина.

    Для борьбы с подводными лодками в США разработаны две самотранспортирующиеся мины. Одна из них, имеющая обозначение "Слим", предназначается для постановки у баз подводных лодок и на путях их предполагаемого движения.

    В основу конструкции мины "Слим" положена дальноходная торпеда с различными неконтактными взрывателями.

    По другому проекту разработана мина, имеющая название "Кэптор". Она представляет собой комбинацию противолодочной торпеды с минным якорным устройством. Торпеда размещается в специальном герметическом алюминиевом контейнере, который ставится на якорь на глубине до 800 м.

    При обнаружении подводной лодки срабатывает прибор мины, откидывается крышка контейнера и запускается двигатель торпеды. Наиболее ответственную часть этой мины составляют приборы обнаружения и классификации целей. Они позволяют отличить подводную лодку от надводного корабля и свою подводную лодку от подводной лодки противника. Приборы реагируют на различные физические поля и дают сигнал на активизацию системы при регистрации не менее двух параметров, например гидродинамического давления и частоты гидроакустического поля.

    Считается, что минный интервал (расстояние между соседними минами) для таких мин близок к радиусу реагирования (предельная дальность работы) аппаратуры самонаведения торпеды (~1800 м), что существенно уменьшает их расход в противолодочном заграждении. Предполагаемый срок службы этих мин от двух до пяти лет.

    Разработка аналогичных мин производится также военно-морскими силами ФРГ.

    Считается, что защита от автоматически плавающих мин весьма затруднительна, так как тралы и охранители кораблей эти мины не вытраливают. Характерной их особенностью является и то, что они снабжаются специальными приборами - ликвидаторами, связанными с часовым механизмом, который устанавливается на заданный срок действия. По истечении этого срока мины тонут или взрываются.

    * * *

    Говоря об общих направлениях развития современных мин, следует иметь в виду, что последнее десятилетие военно-морские силы стран НАТО особое внимание уделяют созданию мин, служащих для борьбы с подводными лодками.

    Отмечается, что мины являются наиболее дешевым и массовым видом оружия, которое с одинаковым успехом может поражать надводные корабли, обычные и атомные подводные лодки.

    По типу носителей большинство современных зарубежных мин является универсальными. Они могут ставиться надводными кораблями, подводными лодками и самолетами.

    Мины оснащаются контактными, неконтактными (магнитными, акустическими, гидродинамическими) и комбинированными взрывателями. Они рассчитываются на длительный срок службы, снабжаются различными противотральными устройствами, минными ловушками, самоликвидаторами и трудно вытраливаются.

    Среди стран НАТО военно-морские силы США располагают наиболее крупными запасами минного оружия. В арсенале минного оружия США имеется большое разнообразие противолодочных мин. Среди них можно отметить корабельную мину Мк.16 с усиленным зарядом и якорную антенную мину Мк.6. Обе мины были разработаны во время второй мировой войны и до настоящего времени находятся на вооружении ВМС США.

    К середине 60-х годов в США было принято на вооружение несколько образцов новых неконтактных мин для использования против подводных лодок. К ним относятся авиационные малые и большие донные неконтактные мины (Мк.52, Мк.55 и Мк.56) и якорная неконтактная мина Мк.57, предназначенная для постановки из торпедных аппаратов подводных лодок.

    Надо отметить, что в США в основном разрабатываются мины, предназначенные для постановки авиацией и подводными лодками.

    Вес заряда авиационных мин - 350-550 кг. При этом вместо тротила их стали снаряжать новыми взрывчатыми веществами, превосходящими мощность тротила в 1,7 раза.

    В связи с требованием применения донных мин против подводных лодок глубина места их постановки доведена до 150-200 м.

    Серьезным недостатком современного минного оружия зарубежные специалисты считают отсутствие противолодочных мин с большим радиусом действия, глубина постановки которых позволяла бы применять их против современных подводных лодок. При этом отмечается, что одновременно усложнилась конструкция и значительно повысилась стоимость мин.