• Что можно приготовить из кальмаров: быстро и вкусно

    2.1. Химический язык и его части

    Человечество использует много разных языков. Кроме естественных языков (японского, английского, русского – всего более 2,5 тысяч), существуют еще и искусственные языки , например, эсперанто. Среди искусственных языков выделяются языки различных наук . Так, в химии используется свой, химический язык .
    Химический язык – система условных обозначений и понятий, предназначенная для краткой, ёмкой и наглядной записи и передачи химической информации.
    Сообщение, написанное на большинстве естественных языков, делится на предложения, предложения – на слова, а слова – на буквы. Если предложения, слова и буквы мы назовем частями языка, то тогда мы сможем выделить аналогичные части и в химическом языке (таблица 2).

    Таблица 2. Части химического языка

    Любым языком овладеть сразу невозможно, это относится и к химическому языку. Поэтому пока вы познакомитесь только с основами этого языка: выучите некоторые " буквы" , научитесь понимать смысл " слов" и" предложений" . В конце этой главы вы познакомитесь с названиями химических веществ – неотъемлемой частью химического языка. По мере изучения химии ваше знание химического языка будет расширяться и углубляться.

    ХИМИЧЕСКИЙ ЯЗЫК.
    1.Какие искусственные языки вы знаете (кроме названных в тексте учебника)?
    2.Чем естественные языки отличаются от искусственных?
    3.Как вы думаете, можно ли при описании химических явлений обходиться без использования химического языка? Если нет, то почему? Если да, то в чем будут заключаться преимущества, а в чем недостатки такого описания?

    2.2. Символы химических элементов

    Символ химического элемента обозначает сам элемент или один атом этого элемента.
    Каждый такой символ представляет собой сокращенное латинское название химического элемента, состоящее из одной или двух букв латинского алфавита (латинский алфавит см. в приложении 1). Символ пишется с прописной буквы. Символы, а также русские и латинские названия некоторых элементов, приведены в таблице 3. Там же даны сведения о происхождении латинских названий. Общего правила произношения символов не существует, поэтому в таблице 3 приводится и " чтение" символа, то есть, как этот символ читается в химической формуле.

    Заменять символом название элемента в устной речи нельзя, а в рукописных или печатных текстах это допускается, но не рекомендуется.В настоящее время известно 110 химических элементов, у 109 из них есть названия и символы, утвержденные Международным союзом теоретической и прикладной химии (ИЮПАК).
    В таблице 3 приведена информация только о 33 элементах. Это те элементы, которые при изучении химии вам встретятся в первую очередь. Русские названия (в алфавитном порядке) и символы всех элементов приведены в приложении 2.

    Таблица 3. Названия и символы некоторых химических элементов

    Название

    Латинское

    Написание

    -

    Написание

    Происхождение

    - -
    Азот N itrogenium От греч. " рождающий селитру" " эн"
    Алюминий Al uminium От лат. " квасцы" " алюминий"
    Аргон Ar gon От греч. " недеятельный" " аргон"
    Барий Ba rium От греч. " тяжелый" " барий"
    Бор B orum От арабск. " белый минерал" " бор"
    Бром Br omum От греч. " зловонный" " бром"
    Водород H ydrogenium От греч. " рождающий воду" " аш"
    Гелий He lium От греч. " Солнце" " гелий"
    Железо Fe rrum От лат. " меч" " феррум"
    Золото Au rum От лат. " горящий" " аурум"
    Йод I odum От греч. " фиолетовый" " йод"
    Калий K alium От арабск. " щёлочь" " калий"
    Кальций Ca lcium От лат. " известняк" " кальций"
    Кислород O xygenium От греч. " рождающий кислоты" " о"
    Кремний Si licium От лат. " кремень" " силициум"
    Криптон Kr ypton От греч. " скрытый" " криптон"
    Магний M ag nesium От назв. полуострова Магнезия " магний"
    Марганец M an ganum От греч. " очищающий" " марганец"
    Медь Cu prum От греч. назв. о. Кипр " купрум"
    Натрий Na trium От арабск, " моющее средство" " натрий"
    Неон Ne on От греч. " новый" " неон"
    Никель Ni ccolum От нем. " медь святого Николая" " никель"
    Ртуть H ydrarg yrum Лат. " жидкое серебро" " гидраргирум"
    Свинец P lumb um От лат. названия сплава свинца с оловом. " плюмбум"
    Сера S ulfur От санскриттского " горючий порошок" " эс"
    Серебро A rg entum От греч. " светлый" " аргентум"
    Углерод C arboneum От лат. " уголь" " цэ"
    Фосфор P hosphorus От греч. " несущий свет" " пэ"
    Фтор F luorum От лат. глагола " течь" " фтор"
    Хлор Cl orum От греч. " зеленоватый" " хлор"
    Хром C hr omium От греч. " краска" " хром"
    Цезий C aes ium От лат. " небесно-голубой" " цезий"
    Цинк Z in cum От нем. " олово" " цинк"

    2.3. Химические формулы

    Для обозначения химических веществ используют химические формулы .

    Для молекулярных веществ химическая формула может обозначать и одну молекулу этого вещества.
    Информация о веществе может быть разной, поэтому существуют разные типы химических формул .
    В зависимости от полноты информации химические формулы делятся на четыре основных типа: простейшие , молекулярные , структурные и пространственные .

    Подстрочные индексы в простейшейформуле не имеют общего делителя.
    Индекс " 1" в формулах не ставится.
    Примеры простейших формул: вода – Н 2 О, кислород – О, сера – S, оксид фосфора – P 2 O 5 , бутан – C 2 H 5 , фосфорная кислота – H 3 PO 4 , хлорид натрия (поваренная соль) – NaCl.
    Простейшая формула воды (Н 2 О) показывает, что в состав воды входит элемент водород (Н) и элемент кислород (О), причем в любой порции (порция – часть чего-либо, что может быть разделено без утраты своих свойств.) воды число атомов водорода в два раза больше числа атомов кислорода.
    Число частиц , в том числе и число атомов , обозначается латинской буквой N . Обозначив число атомов водорода – N H , а число атомов кислорода – N O , мы можем записать, что

    Или N H: N O = 2: 1.

    Простейшая формула фосфорной кислоты (Н 3 РО 4) показывает, что в состав фосфорной кислоты входят атомы водорода , атомы фосфора и атомы кислорода , причем отношение чисел атомов этих элементов в любой порции фосфорной кислоты равно 3:1:4, то есть

    N H: N P: N O = 3: 1: 4.

    Простейшая формула может быть составлена для любого индивидуального химического вещества, а для молекулярного вещества, кроме того, может быть составлена молекулярная формула .

    Примеры молекулярных формул: вода – H 2 O, кислород – O 2 , сера – S 8 , оксид фосфора – P 4 O 10 , бутан – C 4 H 10 , фосфорная кислота – H 3 PO 4 .

    У немолекулярных веществ молекулярных формул нет.

    Последовательность записи символов элементов в простейших и молекулярных формулах определяется правилами химического языка, с которыми вы познакомитесь по мере изучения химии. На информацию, передаваемую этими формулами, последовательность символов влияния не оказывает.

    Из знаков, отражающих строение веществ, мы будем использовать пока только валентный штрих (" черточку"). Этот знак показывает наличие между атомами так называемой ковалентной связи (что это за тип связи и каковы его особенности, вы скоро узнаете).

    В молекуле воды атом кислорода связан простыми (одинарными) связями с двумя атомами водорода, а атомы водорода между собой не связаны. Именно это наглядно показывает структурная формула воды.

    Другой пример: молекула серы S 8 . В этой молекуле 8 атомов серы образуют восьмичленный цикл, в котором каждый атом серы связан с двумя другими атомами простыми связями. Сравните структурную формулу серы с объемной моделью ее молекулы, показанной на рис. 3. Обратите внимание на то, что структурная формула серы не передает форму ее молекулы, а показывает только последовательность соединения атомов ковалентными связями.

    Структурная формула фосфорной кислоты показывает, что в молекуле этого вещества один из четырех атомов кислорода связан только с атомом фосфора двойной связью, а атом фосфора, в свою очередь, связан еще с тремя атомами кислорода простыми связями. Каждый из этих трех атомов кислорода, кроме того, связан простой связью с одним из трех имеющихся в молекуле атомов водорода./p>

    Сравните приведенную ниже объемную модель молекулы метана с его пространственной, структурной и молекулярной формулой:

    В пространственной формуле метана клиновидныевалентные штрихи как бы в перспективе показывают, какой из атомов водорода находится " ближе к нам" , а какой " дальше от нас" .

    Иногда в пространственной формуле указывают длины связей и значения углов между связями в молекуле, как это показано на примере молекулы воды.

    Немолекулярные вещества не содержат молекул. Для удобства проведения химических расчетов в немолекулярном веществе выделяют так называемую формульную единицу .

    Примеры состава формульных единиц некоторых веществ: 1) диоксид кремния (кварцевый песок, кварц) SiO 2 – формульная единица состоит из одного атома кремния и двух атомов кислорода; 2) хлорид натрия (поваренная соль) NaCl – формульная единица состоит из одного атома натрия и одного атома хлора; 3) железо Fe – формульная единица состоит из одного атома железа.Как и молекула, формульная единица – наименьшая порция вещества, сохраняющая его химические свойства.

    Таблица 4

    Информация, передаваемая формулами разных типов

    Тип формулы

    Информация, передаваемая формулой.

    Простейшая

    Молекулярная

    Структурная

    Пространственная

    • Атомы каких элементов входят в состав вещества.
    • Соотношения между числами атомов этих элементов.
    • Число атомов каждого из элементов в молекуле.
    • Типы химических связей.
    • Последовательность соединения атомов ковалентными связями.
    • Кратность ковалентных связей.
    • Взаимное расположение атомов в пространстве.
    • Длины связей и углы между связями (если указаны).

    Рассмотрим теперь на примерах, какую информацию дают нам формулы разных типов.

    1. Вещество: уксусная кислота . Простейшая формула – СН 2 О, молекулярная формула – C 2 H 4 O 2 , структурная формула

    Простейшая формула говорит нам, что
    1) в состав уксусной кислоты входит углерод, водород и кислород;
    2) в этом веществе число атомов углерода относится к числу атомов водорода и к числу атомов кислорода, как 1:2:1, то есть N H: N C:N O = 1:2:1.
    Молекулярная формула добавляет, что
    3) в молекуле уксусной кислоты – 2 атома углерода, 4 атома водорода и 2 атома кислорода.
    Структурная формула добавляет, что
    4, 5) в молекуле два атома углерода связаны между собой простой связью; один из них, кроме этого, связан с тремя атомами водорода, с каждым простой связью, а другой – с двумя атомами кислорода, с одним – двойной связью, а с другим – простой; последний атом кислорода связан еще простой связью с четвертым атомом водорода.

    2. Вещество: хлорид натрия . Простейшая формула – NaCl.
    1) В состав хлорида натрия входит натрий и хлор.
    2) В этом веществе число атомов натрия равно числу атомов хлора.

    3. Вещество: железо . Простейшая формула – Fe.
    1) В состав этого вещества входит только железо, то есть это простое вещество.

    4. Вещество: триметафосфорная кислота . Простейшая формула – HPO 3 , молекулярная формула – H 3 P 3 O 9 , структурная формула

    1) В состав триметафосфорной кислоты входит водород, фосфор и кислород.
    2) N H: N P:N O = 1:1:3.
    3) Молекула состоит из трех атомов водорода, трех атомов фосфора и девяти атомов кислорода.
    4, 5) Три атома фосфора и три атома кислорода, чередуясь, образуют шестичленный цикл. Все связи в цикле простые. Каждый атом фосфора, кроме того, связан еще с двумя атомами кислорода, причем с одним – двойной связью, а с другим – простой. Каждый из трех атомов кислорода, связанных простыми связямис атомами фосфора, связан еще простой связью с атомом водорода.

    Фосфорная кислота – H 3 PO 4 (другое название – ортофосфорная кислота) – прозрачное бесцветное кристаллическое вещество молекулярного строения, плавящееся при 42 o С. Это вещество очень хорошо растворяется в воде и даже поглощает пары воды из воздуха (гигроскопично). Фосфорную кислоту производят в больших количествах и используют прежде всего в производстве фосфорных удобрений, а также в химической промышленности, при производстве спичек и даже в строительстве. Кроме того, фосфорная кислота применяется при изготовлении цемента в зубоврачебной технике, входит в состав многих лекарственных средств. Эта кислота достаточно дешева, поэтому в некоторых странах, например в США, очень чистая сильно разбавленная водой фосфорная кислота добавляется в освежающие напитки для замены дорогой лимонной кислоты.
    Метан – CH 4 . Если у вас дома есть газовая плита, то с этим веществом вы сталкиваетесь ежедневно: природный газ, который горит в конфорках вашей плиты, на 95 % состоит из метана. Метан – газ без цвета и запаха с температурой кипения –161 o С. В смеси с воздухом он взрывоопасен, этим и объясняются происходящие иногда в угольных шахтах взрывы и пожары (другое название метана – рудничный газ). Третье название метана – болотный газ – связано с тем, что пузырьки именно этого газа поднимаются со дна болот, где он образуется в результате деятельности некоторых бактерий. В промышленности метан используется как топливо и сырье для производства других веществ.Метан является простейшим углеводородом . К этому классу веществ относятся также этан (C 2 H 6), пропан (C 3 H 8), этилен (C 2 H 4), ацетилен (C 2 H 2) и многие другие вещества.

    Таблица 5 . Примеры формул разных типов для некоторых веществ -

    «Химический элемент - сера» - Природный сросток кристаллов самородной серы. Возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Серные руды добывают разными способами - в зависимости от условий залегания. Природные минералы серы. Нельзя забывать о возможности ее самовозгорания. Добыча руды открытым способом. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда.

    «Вопросы по химическим элементам» - Могут быть стабильными и радиактивными, естественными и искуственными. Связана с изменением числа энергетических уровней в главных подгруппах. 8. Какой элемент не имеет постоянной «прописки» в Периодической системе? Находятся в постоянном движении. Теллур, 2) селен, 3) осмий, 4) германий. Где накапливается мышьяк?

    «H2O и H2S» - Cульфат-ион. Y = ? K K2 =1,23 · 10?13 моль/л. Получение: Na2SO3 + S = Na2SO3S (+t, водн.р-р). В водном растворе: +Hcl (эфир). Купоросы MSO4·5(7)H2O (M – Cu, Fe, Ni, Mg …). Серная кислота H2SO4. Строение анионов SO32– и HSO3–. = y. Молекула SO3 – неполярная и диамагнитная. ? . Гидросульфит-ион: таутомерия.

    «Периодическая система химических элементов» - 8. Сколько электронов максимально может находиться на третьем энергетическом уровне? Расположить элементы в порядке возрастания металлических свойств. Название страны: «Химический элементарий». Стихи Степана Щипачева. А. 17 Б. 35 В. 35,5 Г. 52 6. Сколько электронов вращается вокруг ядра в атоме фтора?

    «Кальций Сa» - Соединения Ca. Химические свойства Ca. Физические свойства Ca. Кальций относится к распространенным элементам. Применение. Получение кальция в промышленности. Кальций Ca. Опишите физические свойства Ca. Нахождение в природе. Задание для повторения. Кальций Ca серебристо белый и довольно твердый металл, легкий.

    «Элемент фосфор» - Фосфор занимает 12-е место по распространенности элементов в природе. Взаимодействие с простыми веществами - неметаллами. Взаимодействие с металлами. Для связывания соединений кальция добавляют кварцевый песок. При нагревании белого фосфора в растворе щелочи он диспропорционирует. Фосфор. Черный фосфор.

    Всего в теме 46 презентаций

    Инструкция

    Периодическая система представляет собой многоэтажный «дом», в котором располагается большое количество квартир. Каждый «жилец» или в своей собственной квартире под определенным номером, который является постоянным. Помимо этого элемент имеет «фамилию» или название, например кислород, бор или азот. Кроме этих данных в каждой «квартире» или указана такая информация, как относительная атомная масса, которая может иметь точные или округленные значения.

    Как в любом доме, здесь имеются «подъезды», а именно группы. Причем в группах элементы располагаются слева и справа, образуя . В зависимости от того, с какой стороны их больше, та называется главной. Другая подгруппа, соответственно, будет побочной. Также в таблице имеются «этажи» или периоды. Причем периоды могут быть как большими (состоят из двух рядов) так и малыми (имеют только один ряд).

    По таблице можно показать строение атома элемента, каждый из которых имеет положительно заряженное ядро, состоящее из протонов и нейтронов, а также вращающихся вокруг него отрицательно заряженных электронов. Число протонов и электронов численно совпадает и определяется в таблице по порядковому номеру элемента. Например, химический элемент сера имеет №16, следовательно, будет иметь 16 протонов и 16 электронов.

    Чтобы определить количество нейтронов (нейтральных частиц, также расположенных в ядре) вычтите из относительной атомной массы элемента его порядковый номер. Например, железо имеет относительную атомную массу равную 56 и порядковый номер 26. Следовательно, 56 – 26 = 30 протонов у железа.

    Электроны находятся на разном расстоянии от ядра, образуя электронные уровни. Чтобы определить число электронных (или энергетических) уровней, нужно посмотреть на номер периода, в котором располагается элемент. Например, алюминий находится в 3 периоде, следовательно, у него будет 3 уровня.

    По номеру группы (но только для главной подгруппы) можно определить высшую валентность. Например, элементы первой группы главной подгруппы (литий, натрий, калий и т.д.) имеют валентность 1. Соответственно, элементы второй группы (бериллий, магний, кальций и т.д.) будут иметь валентность равную 2.

    Также по таблице можно проанализировать свойства элементов. Слева направо металлические свойства ослабевают, а неметаллические усиливаются. Это хорошо видно на примере 2 периода: начинается щелочным металлом натрием, затем щелочноземельный металл магний, после него амфотерный элемент алюминий, затем неметаллы кремний, фосфор, сера и заканчивается период газообразными веществами – хлором и аргоном. В следующем периоде наблюдается аналогичная зависимость.

    Сверху вниз также наблюдается закономерность – металлические свойства усиливаются, а неметаллические ослабевают. То есть, например, цезий гораздо активнее по сравнению с натрием.

    Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента.

    Шаги

    Часть 1

    Структура таблицы

      Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы (в нижнем правом углу). Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.

    1. Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми.

      • Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам.
    2. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке.

      • Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.
      • В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими (например, IA) или арабскими (например,1A или 1) цифрами.
      • При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».
    3. Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам (элементы одной группы обладают схожими физическими и химическими свойствами). Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.

      • Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21.
      • Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.
    4. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.

      • Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей.
      • Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.
      • При движении вдоль строки слева направо говорят, что вы «просматриваете период».
    5. Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.

      Часть 2

      Обозначения элементов
      1. Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.

        • Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия.
      2. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом.

        • Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.
      3. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.

        • Атомный номер всегда является целым числом.
      4. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент!

        • По атомному номеру элемента можно также определить количество электронов и нейтронов в атоме.
      5. Обычно количество электронов равно числу протонов. Исключением является тот случай, когда атом ионизирован. Протоны имеют положительный, а электроны - отрицательный заряд. Поскольку атомы обычно нейтральны, они содержат одинаковое количество электронов и протонов. Тем не менее, атом может захватывать электроны или терять их, и в этом случае он ионизируется.

        • Ионы имеют электрический заряд. Если в ионе больше протонов, то он обладает положительным зарядом, и в этом случае после символа элемента ставится знак «плюс». Если ион содержит больше электронов, он имеет отрицательный заряд, что обозначается знаком «минус».
        • Знаки «плюс» и «минус» не ставятся, если атом не является ионом.