• Что можно приготовить из кальмаров: быстро и вкусно

    ОПРЕДЕЛЕНИЕ

    Химическая кинетика – учение о скоростях и механизмах химических реакций.

    Изучение скоростей протекания реакций, получение данных о факторах, влияющих на скорость химической реакции, а также изучение механизмов химических реакций осуществляют экспериментально.

    ОПРЕДЕЛЕНИЕ

    Скорость химической реакции – изменение концентрации одного из реагирующих веществ или продуктов реакции в единицу времени при неизменном объеме системы.

    Скорость гомогенной и гетерогенной реакций определяются различно.

    Определение меры скорости химической реакции можно записать в математической форме. Пусть – скорость химической реакции в гомогенной системе, n B – число моле какого-либо из получающихся при реакции веществ, V – объем системы, – время. Тогда в пределе:

    Это уравнение можно упростить – отношение количества вещества к объему представляет собой молярную концентрацию вещества n B /V = c B , откуда dn B / V = dc B и окончательно:

    На практике измеряют концентрации одного или нескольких веществ в определенные промежутки времени. Концентрации исходных веществ со временем уменьшаются, а концентрации продуктов – увеличиваются (рис. 1).


    Рис. 1. Изменение концентрации исходного вещества (а) и продукта реакции (б) со временем

    Факторы, влияющие на скорость химической реакции

    Факторами, оказывающими влияние на скорость химической реакции, являются: природа реагирующих веществ, их концентрации, температура, присутствие в системе катализаторов, давление и объем (в газовой фазе).

    С влиянием концентрации на скорость химической реакции связан основной закон химической кинетики – закон действующих масс (ЗДМ): скорость химической реакции прямопропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов. ЗДМ не учитывает концентрацию веществ в твердой фазе в гетерогенных системах.

    Для реакции mA +nB = pC +qD математическое выражение ЗДМ будет записываться:

    K × C A m × C B n

    K × [A] m × [B] n ,

    где k – константа скорости химической реакции, представляющая собой скорость химической реакции при концентрации реагирующих веществ 1моль/л. В отличие от скорости химической реакции, k не зависит от концентрации реагирующих веществ. Чем выше k, тем быстрее протекает реакция.

    Зависимость скорости химической реакции от температуры определяется правилом Вант-Гоффа. Правило Вант-Гоффа: при повышении температуры на каждые десять градусов скорость большинства химических реакций увеличивается примерно в 2 – 4 раза. Математическое выражение:

    (T 2) = (T 1) × (T2-T1)/10 ,

    где – температурный коэффициент Вант-Гоффа, показывающий во сколько раз увеличилась скорость реакции при повышении температуры на 10 o С.

    Молекулярность и порядок реакции

    Молекулярность реакции определяется минимальным числом молекул, одновременно вступающих во взаимодействие (участвующих в элементарном акте). Различают:

    — мономолекулярные реакции (примером могут служить реакции разложения)

    N 2 O 5 = 2NO 2 + 1/2O 2

    K × C, -dC/dt = kC

    Однако, не все реакции, подчиняющиеся этому уравнению мономолекулярны.

    — бимолекулярные

    CH 3 COOH + C 2 H 5 OH = CH 3 COOC 2 H 5 + H 2 O

    K × C 1 × C 2 , -dC/dt = k × C 1 × C 2

    — тримолекулярные (встречаются очень редко).

    Молекулярность реакции определяется ее истинным механизмом. По записи уравнения реакции определить ее молекулярность нельзя.

    Порядок реакции определяется по виду кинетического уравнения реакции. Он равен сумме показателей степеней концентрации в этом уравнении. Например:

    CaCO 3 = CaO + CO 2

    K × C 1 2 × C 2 – третий порядок

    Порядок реакции может быть дробным. В таком случае он определяется экспериментально. Если реакция протекает в одну стадию, то порядок реакции и ее молекулярность совпадают, если в несколько стадий, то порядок определяется самой медленной стадией и равен молекулярности этой реакции.

    Примеры решения задач

    ПРИМЕР 1

    Химические реакции протекают с различными скоростями: с малой скоростью - при образовании сталактитов и сталагмитов, со средней скоростью - при варке пищи, мгновенно - при взрыве. Очень быстро проходят реакции в водных растворах.

    Определение скорости хи­мической реакции, а также выяснение ее зависимости от условий проведения про­цесса - задача химической кинетики - науки о законо­мерностях протекания хими­ческих реакций во времени.

    Если химические реакции происходят в однородной сре­де, например в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реак­ции называют гомогенными .

    (v гомог) определя­ется как изменением количества вещества в еди­ницу времени в единице объема:

    где Δn - изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); Δt - интервал времени (с, мин); V - объем газа или раствора (л).

    Поскольку отношение количества вещества к объему представляет собой молярную концентра­цию С, то

    Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

    если объем системы не меняется.

    Если реакция идет между веществами, находя­щимися в разных агрегатных состояниях (напри­мер, между твердым веществом и газом или жид­костью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она прохо­дит только на поверхности соприкосновения ве­ществ. Такие реакции называют гетерогенными .

    Определяется как изменение количества вещества в единицу вре­мени на единице поверхности.

    где S - площадь поверхности соприкосновения ве­ществ (м 2 , см 2).

    Изменение количества ве­щества, по которому опреде­ляют скорость реакции, - это внешний фактор, наблюда­емый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не раз­лететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли «старые связи» и смогли образоваться «новые», а для этого частицы должны обладать достаточной энергией.

    Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферно давлении исчисляются миллиардами за 1 секунду, то есть все реакции должны были бы идти мгновен­но. Но это не так. Оказывается, что лишь очень не­большая доля молекул обладает необходимой энер­гией, приводящей к эффективному соударению.

    Минимальный избыток энергии, который долж­на иметь частица (или пара частиц), чтобы произо­шло эффективное соударение, называют энергией активации E a .

    Таким образом, на пути всех частиц, вступаю­щих в реакцию, имеется энергетический барьер, равный энергии активации E a . Когда он малень­кий, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В против­ном случае требуется «толчок». Когда вы подноси­те спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию E a , необходимую для эф­фективного соударения молекул спирта с молеку­лами кислорода (преодоление барьера).

    Скорость химической реакции зависит от мно­гих факторов. Основными из них являются: при­рода и концентрация реагирующих веществ, дав­ление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирую­щих веществ в случае гетерогенных реакций .

    Температура

    При повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. X. Вант- Гофф сформулировал правило:

    Повышение темпе­ратуры на каждые 10 °С приводит к увеличению скорости реакции в 2-4 раза (эту величину назы­вают температурным коэффициентом реакции).

    При повышении темпе­ратуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко по­вышается доля «активных» молекул, участвующих в эф­фективных соударениях, пре­одолевающих энергетичес­кий барьер реакции. Математически эта зависимость выражается со­отношением:

    где v t 1 и v t 2 - скорости реакции соответственно при конечной t 2 и начальной t 1 температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые 10 °С.

    Однако для увеличения скорости реакции повы­шение температуры не всегда применимо, т. к. ис­ходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества и т. д.

    Эндотермические и экзотермические реакции

    Реакция метана с кислородом воздуха, как известно, сопровождается выделением большого количества тепла. Поэтому ее используют в быту для приготовления пищи, нагревания воды и отопления. Природный газ, поступающий в дома по трубам, на 98% состоит именно из метана. Реакция оксида кальция (СаО) с водой тоже сопровождается выделением большого количества тепла.

    О чем могут говорить эти факты? При образовании новых химических связей в продуктах реакции выделяется больше энергии, чем требуется на разрыв химических связей в реагентах. Избыток энергии выделяется в виде тепла, а иногда и света.

    СН 4 + 2О 2 = СО 2 + 2Н 2 О + Q (энергия (свет, тепло));

    СаО + Н 2 О = Са(ОН) 2 + Q (энергия (тепло)).

    Такие реакции должны протекать легко (как легко катится под гору камень).

    Реакции, в которых энергия выделяется, называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского «экзо» – наружу).

    Например, многие окислительно-восстановительные реакции являются экзотермическими. Одна из таких красивых реакций — внутримолекулярное окисление-восстановление, протекающее внутри одной и той же соли — дихромата аммония (NH 4) 2 Cr 2 O 7:

    (NH 4) 2 Cr 2 O 7 = N 2 + Cr 2 O 3 + 4 H 2 O + Q (энергия).

    Другое дело – обратные реакции. Они аналогичны закатыванию камня в гору. Получить метан из CO 2 и воды до сих пор не удается, а для получения негашеной извести СаО из гидроксида кальция Са(ОН) 2 требуются сильное нагревание. Такая реакция идет только при постоянном притоке энергии извне:

    Са(ОН) 2 = СаО + Н 2 О — Q (энергия (тепло))

    Это говорит о том, что разрыв химических связей в Ca(OH) 2 требует большей энергии, чем может выделиться при образовании новых химических связей в молекулах CaO и H 2 O.

    Реакции, в которых энергия поглощается, называются ЭНДОТЕРМИЧЕСКИМИ (от «эндо» – внутрь).

    Концентрация реагирующих веществ

    Изменение давления при участии в реакции га­зообразных веществ также приводит к изменению концентрации этих веществ.

    Чтобы осуществилось химическое взаимодей­ствие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирую­щих веществ, тем больше столкновений и, соответ­ственно, выше скорость реакции. Например, в чи­стом кислороде ацетилен сгорает очень быстро. При этом развивается температу­ра, достаточная для плавле­ния металла. На основе боль­шого экспериментального материала в 1867 г. норвеж­цами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

    Скорость химической реакции пропорциональ­на произведению концентраций реагирующих ве­ществ, взятых в степенях, равных их коэффици­ентам в уравнении реакции.

    Этот закон называют также законом действую­щих масс.

    Для реакции А + В = D этот закон выразится так:

    Для реакции 2А + В = D этот закон выразится так:

    Здесь С А, С В - концентрации веществ А и В (моль/л); k 1 и k 2 - коэффициенты пропорцио­нальности, называемые константами скорости ре­акции.

    Физический смысл константы скорости реак­ции нетрудно установить - она численно равна скорости реакции, в которой концентрации реаги­рующих веществ равны 1 моль/л или их произ­ведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от тем­пературы и не зависит от концентрации веществ.

    Закон действующих масс не учитывает кон­центрации реагирующих веществ, находящихся в твердом состоянии , т. к. они реагируют на по­верхности и их концентрации обычно являются постоянными.

    Например, для реакции горения угля выражение скорости реакции должно быть запи­сано так:

    т. е. скорость реакции пропорциональна только концентрации кислорода.

    Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции мо­жет сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

    Действие катализаторов

    Можно увеличить скорость реакции, используя специальные вещества, которые изменяют меха­низм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией актива­ции. Их называют катализаторами (от лат. katalysis - разрушение).

    Катализатор действует как опытный провод­ник, направляющий группу туристов не через вы­сокий перевал в горах (его преодоление требует много сил и времени и не всем до­ступно), а по известным ему обходным тропам, по кото­рым можно преодолеть гору значительно легче и быстрее.

    Правда, по обходному пу­ти можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, ко­торые называют селективны­ми. Ясно, что нет необходи­мости сжигать аммиак и азот, зато оксид азота (II) находит использование в производстве азотной кислоты.

    Катализаторы - это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остаю­щиеся неизменными количественно и качественно.

    Изменение скорости химической реакции или ее направления с помощью катализатора называ­ют катализом. Катализаторы широко использу­ют в различных отраслях промышленности и на транспорте (каталитические преобразователи, пре­вращающие оксиды азота выхлопных газов авто­мобиля в безвредный азот).

    Различают два вида катализа.

    Гомогенный катализ , при котором и катализа­тор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

    Гетерогенный катализ , при котором катализа­тор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида мар­ганца (IV):

    Сам катализатор не рас­ходуется в результате реак­ции, но если на его поверх­ности адсорбируются другие вещества (их называют каталитическими ядами), то поверхность становится не­работоспособной, требуется регенерация катализатора. Поэтому перед проведени­ем каталитической реакции тщательно очищают исход­ные вещества.

    Например, при производстве серной кислоты контактным способом используют твердый катали­затор - оксид ванадия (V) V 2 O 5:

    При производстве метанола используют твер­дый «цинкохромовый» катализатор (8ZnO Cr 2 O 3 х CrO 3):

    Очень эффективно работают биологические ка­тализаторы - ферменты. По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью про­текают сложные химические реакции.

    Известны другие интересные вещества - ин­гибиторы (от лат. inhibere - задерживать). Они с высокой скоростью реагируют с активными ча­стицами с образованием малоактивных соедине­ний. В результате реакция резко замедляется и за­тем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

    Например, с помощью ингибиторов стабилизи­руют растворы пероксида водорода.

    Природа реагирующих веществ (их состав, строение)

    Значение энергии активации является тем факто­ром, посредством которого сказывается влияние при­роды реагирующих веществ на скорость реакции.

    Если энергия активации мала (< 40 кДж/моль), то это означает, что значительная часть столкнове­ний между частицами реагирующих веществ при­водит к их взаимодействию, и скорость такой ре­акции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих ре­акциях участвуют разноименно заряженные ионы, и энергия активации в данных случаях ничтожно мала.

    Если энергия активации велика (> 120 кДж/моль), то это означает, что лишь ничтожная часть стол­кновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заме­тить практически невозможно.

    Если энергии активации химических ре­акций имеют промежуточные значения (40­120 кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаи­модействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимо­действие цинка с соляной кислотой и др.

    Поверхность соприкосновения реагирующих веществ

    Скорость реакций, иду­щих на поверхности веществ, т. е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растер­тый в порошок мел гораздо быстрее растворяется в соля­ной кислоте, чем равный по массе кусочек мела.

    Увеличение скорости реакции объясняется в первую очередь увеличением поверхности со­прикосновения исходных веществ , а также рядом других причин, например, нарушением структуры «правильной» кристаллической решетки. Это при­водит к тому, что частицы на поверхности обра­зующихся микрокристаллов значительно реакци­онноспособнее, чем те же частицы на «гладкой» поверхности.

    В промышленности для проведения гетероген­ных реакций используют «кипящий слой», чтобы увеличить поверхность соприкосновения реагиру­ющих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью «кипящего слоя» проводят об­жиг колчедана.

    Справочный материал для прохождения тестирования:

    Таблица Менделеева

    Таблица растворимости

    Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

    V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

    Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

    Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
    Факторы, влияющие на скорость химических реакций.
    1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
    Примеры
    Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
    Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

    2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
    Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
    Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

    AA + bB + . . . ® . . .

    • [A] a [B] b . . .

    Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
    Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
    Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

    3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:

    Задание Реакция протекает по уравнению 2А + В = 4С. Начальная концентрация вещества А 0,15 моль/л, а через 20 секунд – 0,12 моль/л. Вычислите среднюю скорость реакции.
    Решение Запишем формулу для вычисления средней скорости химической реакции:

    Скорость химической реакции

    Тема «Скорость химической реакции», пожалуй, наиболее сложная и противоречивая в школьной программе. Это связано со сложностью самой химической кинетики – одного из разделов физической химии. Неоднозначно уже само определение понятия «скорость химической реакции» (см., например, статью Л.С.Гузея в газете «Химия», 2001, № 28,
    с. 12). Еще больше проблем возникает при попытке применить закон действующих масс для скорости реакции к любым химическим системам, ведь круг объектов, для которых возможно количественное описание кинетических процессов в рамках школьной программы, очень узок. Хотелось бы особо отметить некорректность использования закона действующих масс для скорости химической реакции при химическом равновесии.
    В то же время вообще отказаться от рассмотрения этой темы в школе было бы неверным. Представления о скорости химической реакции очень важны при изучении многих природных и технологических процессов, без них невозможно говорить о катализе и катализаторах, в том числе и о ферментах. Хотя при обсуждении превращений веществ используются в основном качественные представления о скорости химической реакции, введение простейших количественных соотношений все же желательно, особенно для элементарных реакций.
    В публикуемой статье достаточно подробно рассматриваются вопросы химической кинетики, которые можно обсуждать на школьных уроках химии. Исключение из курса школьной химии спорных и противоречивых моментов этой темы особенно важно для тех учащихся, кто собирается продолжить свое химическое образование в вузе. Ведь полученные в школе знания нередко вступают в противоречие с научной реальностью.

    Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход.

    Основные понятия

    Количественной характеристикой того, насколько быстро протекает данная реакция, является скорость химической реакции, т. е. скорость расходования реагентов или скорость появления продуктов. При этом безразлично, о каком из участвующих в реакции веществе идет речь, поскольку все они связаны между собой через уравнение реакции. По изменению количества одного из веществ можно судить о соответствующих изменениях количеств всех остальных.

    Скоростью химической реакции () называют изменение количества вещества реагента или продукта () за единицу времени () в единице объема (V ):

    = /(V ).

    Скорость реакции в данном случае обычно выражается в моль/(л с).

    Приведенное выражение относится к гомогенным химическим реакциям, протекающим в однородной среде, например между газами или в растворе:

    2SO 2 + O 2 = 2SO 3 ,

    BаСl 2 + Н 2 SO 4 = ВаSО 4 + 2НСl.

    Гетерогенные химические реакции идут на поверхности соприкосновения твердого вещества и газа, твердого вещества и жидкости и т.п. К гетерогенным реакциям относятся, например, реакции металлов с кислотами:

    Fе + 2НСl = FeСl 2 + Н 2 .

    В этом случае скоростью реакции называют изменение количества вещества реагента или продукта () за единицу времени () на единице поверхности (S):

    = /(S ).

    Скорость гетерогенной реакции выражается в моль/(м 2 с).

    Чтобы управлять химическими реакциями, важно не только уметь определять их скорости, но и выяснить, какие условия оказывают на них влияние. Раздел химии, изучающий скорость химических реакций и влияние на нее различных факторов, называется химической кинетикой .

    Частота соударений реагирующих частиц

    Важнейший фактор, определяющий скорость химической реакции, – концентрация .

    При повышении концентрации реагирующих веществ скорость реакции, как правило, возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

    Для гомогенных реакций повышение концентрации одного или нескольких реагирующих веществ приведет к увеличению скорости реакции. При понижении концентрации наблюдается противоположный эффект. Концентрация веществ в растворе может быть изменена путем добавления или удаления из сферы реакции реагирующих веществ или растворителя. В газах концентрация одного из веществ может быть увеличена путем введения дополнительного количества этого вещества в реакционную смесь. Концентрации всех газообразных веществ можно увеличить одновременно, уменьшая объем, занимаемый смесью. При этом скорость реакции возрастет. Увеличение объема приводит к обратному результату.

    Скорость гетерогенных реакций зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов, а также от состояния кристаллических структур твердых тел. Любые нарушения в кристаллической структуре вызывают увеличение реакционной способности твердых тел, т.к. для разрушения прочной кристаллической структуры требуется дополнительная энергия.

    Рассмотрим горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится. Вместе с тем древесина горит в чистом кислороде значительно быстрее, чем на воздухе, который содержит лишь около 20% кислорода.

    Для протекания химической реакции должно произойти столкновение частиц – атомов, молекул или ионов. В результате столкновений происходит перегруппировка атомов и возникают новые химические связи, что приводит к образованию новых веществ. Вероятность столкновения двух частиц достаточно высока, вероятность одновременного столкновения трех частиц существенно меньше. Одновременное столкновение четырех частиц чрезвычайно маловероятно. Поэтому большинство реакций протекает в несколько стадий, на каждой из которых происходит взаимодействие не более трех частиц.

    Реакция окисления бромоводорода протекает с заметной скоростью при 400–600 °С:

    4НВr + O 2 = 2Н 2 О + 2Вr 2 .

    В соответствии с уравнением реакции одновременно должно столкнуться пять молекул. Однако вероятность такого события практически равна нулю. Более того, экспериментальные исследования показали, что повышение концентрации – либо кислорода, либо бромоводорода – увеличивает скорость реакции в одно и то же число раз. И это при том, что на каждую молекулу кислорода расходуется четыре молекулы бромоводорода.

    Детальное рассмотрение данного процесса показывает, что он протекает в несколько стадий:

    1) НBr + О 2 = НООВr (медленная реакция);

    2) НООВr + НВr = 2НОВr (быстрая реакция);

    3) НОВr + НВr = Н 2 О + Вr 2 (быстрая реакция).

    Приведенные реакции, так называемые элементарные реакции , отражают механизм реакции окисления бромоводорода кислородом. Важно отметить, что в каждой из промежуточных реакций участвует только по две молекулы. Сложение первых двух уравнений и удвоенного третьего дает суммарное уравнение реакции. Общая же скорость реакции определяется наиболее медленной промежуточной реакцией, в которой взаимодействуют одна молекула бромоводорода и одна молекула кислорода.

    Скорость элементарных реакций прямо пропорциональна произведению молярных концентраций с (с – это количество вещества в единице объема, с = /V ) реагентов, взятых в степенях, равных их стехиометрическим коэффициентам (закон действующих масс для скорости химической реакции). Это справедливо лишь для уравнений реакций, отражающих механизмы реальных химических процессов, когда стехиометрические коэффициенты перед формулами реагентов соответствуют числу взаимодействующих частиц.

    По числу взаимодействующих в реакции молекул различают реакции мономолекулярные, бимолекулярные и тримолекулярные. Например, диссоциация молекулярного йода на атомы: I 2 = 2I – мономолекулярная реакция.

    Взаимодействие йода с водородом: I 2 + Н 2 = 2HI – бимолекулярная реакция. Закон действующих масс для химических реакций разной молекулярности записывается по-разному.

    Мономолекулярные реакции:

    А = В + С,

    = kc A ,

    где k – константа скорости реакции.

    Бимолекулярные реакции:

    = kc A c В.

    Тримолекулярные реакции:

    = kc 2 A c В.

    Энергия активации

    Столкновение химических частиц приводит к химическому взаимодействию лишь в том случае, если сталкивающиеся частицы обладают энергией, превышающей некоторую определенную величину. Рассмотрим взаимодействие газообразных веществ, состоящих из молекул А 2 и В 2:

    А 2 + В 2 = 2АВ.

    В ходе химической реакции происходит перегруппировка атомов, сопровождающаяся разрывом химических связей в исходных веществах и образованием связей в продуктах реакции. При столкновении реагирующих молекул сначала образуется так называемый активированный комплекс , в котором происходит перераспределение электронной плотности, и лишь потом получается конечный продукт реакции:

    Энергию, необходимую для перехода веществ в состояние активированного комплекса, называют энергией активации .

    Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно. Если энергия активации велика, то очень малая часть соударений приводит к образованию новых веществ. Так, скорость реакции между водородом и кислородом при комнатной температуре практически равна нулю.

    Итак, на скорость реакции оказывает влияние природа реагирующих веществ . Рассмотрим для примера реакции металлов с кислотами. Если опустить в пробирки с разбавленной серной кислотой одинаковые кусочки меди, цинка, магния и железа, можно увидеть, что интенсивность выделения пузырьков газообразного водорода, характеризующая скорость протекания реакции, для этих металлов существенно различается. В пробирке с магнием наблюдается бурное выделение водорода, в пробирке с цинком пузырьки газа выделяются несколько спокойнее. Еще медленнее протекает реакция в пробирке с железом (рис.). Медь вообще не вступает в реакцию с разбавленной серной кислотой. Таким образом, скорость реакции зависит от активности металла.

    При замене серной кислоты (сильной кислоты) на уксусную (слабую кислоту) скорость реакции во всех случаях существенно замедляется. Можно сделать вывод, что на скорость реакции металла с кислотой влияет природа обоих реагентов – как металла, так и кислоты.

    Повышение температуры приводит к увеличению кинетической энергии химических частиц, т.е. увеличивает число частиц, имеющих энергию выше энергии активации. При повышении температуры число столкновений частиц также увеличивается, что в некоторой степени увеличивает скорость реакции. Однако повышение эффективности столкновений за счет увеличения кинетической энергии оказывает большее влияние на скорость реакции, чем увеличение числа столкновений.

    При повышении температуры на десять градусов скорость увеличивается в число раз, равное температурному коэффициенту скорости :

    = T +10 /T .

    При повышении температуры от T до T "
    отношение скоростей реакций T " и T равно
    температурному коэффициенту скорости в степени (T " – T )/10:

    T " /T = (T "–T )/10.

    Для многих гомогенных реакций температурный коэффициент скорости равен 24 (правило Вант-Гоффа). Зависимость скорости реакции от температуры можно проследить на примере взаимодействия оксида меди(II) с разбавленной серной кислотой. При комнатной температуре реакция протекает очень медленно. При нагревании реакционная смесь быстро окрашивается в голубой цвет за счет образования сульфата меди(II):

    СuО + Н 2 SО 4 = СuSO 4 + Н 2 О.

    Катализаторы и ингибиторы

    Многие реакции можно ускорить или замедлить путем введения некоторых веществ. Добавляемые вещества не участвуют в реакции и не расходуются в ходе ее протекания, но оказывают существенное влияние на скорость реакции. Эти вещества изменяют механизм реакции (в том числе состав активированного комплекса) и понижают энергию активации, что обеспечивает ускорение химических реакций. Вещества – ускорители реакций называют катализаторами , а само явление такого ускорения реакции – катализом .

    Многие реакции в отсутствие катализаторов протекают очень медленно или не протекают совсем. Одной из таких реакций является разложение пероксида водорода:

    2Н 2 О 2 = 2Н 2 О + О 2 .

    Если опустить в сосуд с водным раствором пероксида водорода кусочек твердого диоксида марганца, то начнется бурное выделение кислорода. После удаления диоксида марганца реакция практически прекращается. Путем взвешивания нетрудно убедиться, что диоксид марганца в данном процессе не расходуется – он лишь катализирует реакцию.

    В зависимости от того, в одинаковых или различных агрегатных состояниях находится катализатор и реагирующие вещества, различают гомогенный и гетерогенный катализ.

    При гомогенном катализе катализатор может ускорить реакцию путем образования промежуточных веществ за счет взаимодействия с одним из исходных реагентов. Например:

    При гетерогенном катализе химическая реакция обычно протекает на поверхности катализатора:

    Катализаторы широко распространены в природе. Практически все превращения веществ в живых организмах протекают с участием органических катализаторов – ферментов.

    Катализаторы используют в химическом производстве для ускорения тех или иных процессов. Кроме них применяют также вещества, замедляющие химические реакции, – ингибиторы . С помощью ингибиторов, в частности, защищают металлы от коррозии.

    Факторы, влияющие на скорость химической реакции

    Увеличивают скорость Уменьшают скорость
    Наличие химически активных реагентов Наличие химически неактивных реагентов
    Повышение концентрации реагентов Понижение концентрации реагентов
    Увеличение поверхности твердых и жидких реагентов Уменьшение поверхности твердых и жидких реагентов
    Повышение температуры Понижение температуры
    Присутствие катализатора Присутствие ингибитора

    ЗАДАНИЯ

    1. Дайте определение скорости химической реакции. Напишите выражение кинетического закона действующих масс для следующих реакций:

    а) 2С (тв.) + О 2 (г.) = 2СО (г.);

    б) 2НI (г.) = Н 2 (г.) + I 2 (г.).

    2. От чего зависит скорость химической реакции? Приведите математическое выражение зависимости скорости химической реакции от температуры.

    3. Укажите, как влияет на скорость реакции (при постоянном объеме):

    а) увеличение концентрации реагентов;

    б) измельчение твердого реагента;
    в) понижение температуры;
    г) введение катализатора;
    д) уменьшение концентрации реагентов;
    е) повышение температуры;
    ж) введение ингибитора;
    з) уменьшение концентрации продуктов.

    4. Рассчитайте скорость химической реакции

    СО (г.) + Н 2 О (г.) = СО 2 (г.) + Н 2 (г.)

    в сосуде емкостью 1 л, если через 1 мин 30 с после ее начала количество вещества водорода было 0,32 моль, а через 2 мин 10 с стало 0,44 моль. Как повлияет на скорость реакции увеличение концентрации СО?

    5. В результате одной реакции за определенный промежуток времени образовалось 6,4 г йодоводорода, а в другой реакции в тех же условиях – 6,4 г диоксида серы. Сравните скорости этих реакций. Как изменятся скорости этих реакций при повышении температуры?

    6. Определите скорость реакции

    СО (г.) + Сl 2 (г.) = СОCl 2 (г.),

    если через 20 с после начала реакции исходное количество вещества оксида углерода(II) уменьшилось c 6 моль в 3 раза (объем реактора равен 100 л). Как изменится скорость реакции, если вместо хлора использовать менее активный бром? Как изменится скорость реакции при введении
    а) катализатора; б) ингибитора?

    7. В каком случае реакция

    СaО (тв.) + СО 2 (г.) = СaCO 3 (тв.)

    протекает быстрее: при использовании крупных кусков или порошка оксида кальция? Рассчитайте:
    а) количество вещества; б) массу карбоната кальция, образовавшегося за 10 с, если скорость реакции составляет 0,1 моль/(л с), объем реактора равен 1 л.

    8. Взаимодействие образца магния с хлороводородной кислотой НСl позволяет получить 0,02 моль хлорида магния через 30 с после начала реакции. Определите, за какое время можно получить 0,06 моль хлорида магния.

    Е) от 70 до 40 °С скорость реакции уменьшилась в 8 раз;
    ж) от 60 до 40 °С скорость реакции уменьшилась в 6,25 раза;
    з) от 40 до 10 °С скорость реакции уменьшилась в 27 раз.

    11. Владелец автомашины покрасил ее новой краской, а затем обнаружил, что согласно инструкции она должна сохнуть 3 ч при 105 °С. За какое время высохнет краска при 25 °С, если температурный коэффициент реакции полимеризации, лежащей в основе этого процесса, равен: а) 2; б) 3; в) 4?

    ОТВЕТЫ НА ЗАДАНИЯ

    1. а) = kc (О 2); б) = kc (HI) 2 .

    2. T +10 = T .

    3. Скорость реакции увеличивается в случаях а, б, г, е; уменьшается – в, д, ж; не изменяется – з.

    4. 0,003 моль/(л с). При увеличении концентрации СО скорость реакции возрастает.

    5. Скорость первой реакции в 2 раза ниже.

    6. 0,002 моль/(л с).

    7. а) 1 моль; б) 100 г.

    9. Увеличатся в 2 раза скорости реакций д, ж, з; в 4 раза – а, б, е; в 8 раз – в, г.

    10. Температурный коэффициент:

    2 для реакций б, е; = 2,5 – в, ж; = 3 – д, з; = 3,5 – а, г.

    а) 768 ч (32 сут, т. е. более 1 месяца);
    б) 19 683 ч (820 сут, т. е. более 2 лет);
    в) 196 608 ч (8192 сут, т. е. 22 года).



    (t 2 - t 1) / 10
    Vt 2 / Vt 1 = g

    (где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
    Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

    • e -Ea/RT

    где
    A - постоянная, зависящая от природы реагирующих веществ;
    R - универсальная газовая постоянная ;

    Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
    Энергетическая диаграмма химической реакции.

    Экзотермическая реакция Эндотермическая реакция

    А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
    Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

    4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

    5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

    Изучением скорости химической реакции и условиями, влияющими на ее изменение, занимается одно из направлений физической химии - химическая кинетика. Она также рассматривает механизмы протекания этих реакций и их термодинамическую обоснованность. Эти исследования важны не только в научных целях, но и для контроля взаимодействия компонентов в реакторах при производстве всевозможных веществ.

    Понятие скорости в химии

    Скоростью реакции принято называть некое изменение концентраций, вступивших в реакцию соединений (ΔС) в единицу времени (Δt). Математическая формула скорости химической реакции выглядит следующим образом:

    ᴠ = ±ΔC/Δt.

    Измеряют скорость реакции в моль/л∙с, если она происходит во всем объеме (то есть реакция гомогенная) и в моль/м 2 ∙с, если взаимодействие идет на поверхности, разделяющей фазы (то есть реакция гетерогенная). Знак «-» в формуле имеет отношение к изменению значений концентраций исходных реагирующих веществ, а знак «+» - к изменяющимся значениям концентраций продуктов той же самой реакции.

    Примеры реакций с различной скоростью

    Взаимодействия химических веществ могут осуществляться с различной скоростью. Так, скорость нарастания сталактитов, то есть образования карбоната кальция, составляет всего 0,5 мм за 100 лет. Медленно идут некоторые биохимические реакции, например, фотосинтез и синтез белка. С довольно низкой скоростью протекает коррозия металлов.

    Средней скоростью можно охарактеризовать реакции, требующие от одного до нескольких часов. Примером может послужить приготовление пищи, сопровождающееся разложением и превращением соединений, содержащихся в продуктах. Синтез отдельных полимеров требует нагревания реакционной смеси в течение определенного времени.

    Примером химических реакций, скорость которых довольно высока, могут послужить реакции нейтрализации, взаимодействие гидрокарбоната натрия с раствором уксусной кислоты, сопровождающееся выделением углекислого газа. Также можно упомянуть взаимодействие нитрата бария с сульфатом натрия, при котором наблюдается выделение осадка нерастворимого сульфата бария.

    Большое число реакций способно протекать молниеносно и сопровождаются взрывом. Классический пример - взаимодействие калия с водой.

    Факторы, влияющие на скорость химической реакции

    Стоит отметить, что одни и те же вещества могут реагировать друг с другом с различной скоростью. Так, например, смесь газообразных кислорода и водорода может довольно длительное время не проявлять признаков взаимодействия, однако при встряхивании емкости или ударе реакция приобретает взрывной характер. Поэтому химической кинетикой и выделены определенные факторы, которые имеют способность оказывать влияние на скорость химической реакции. К ним относят:

    • природу взаимодействующих веществ;
    • концентрацию реагентов;
    • изменение температуры;
    • наличие катализатора;
    • изменение давления (для газообразных веществ);
    • площадь соприкосновения веществ (если говорят о гетерогенных реакциях).

    Влияние природы вещества

    Столь существенное отличие в скоростях химических реакций объясняется разными значениями энергии активации (Е а). Под ней понимают некое избыточное количество энергии в сравнении со средним ее значением, необходимым молекуле при столкновении, для того чтобы реакция произошла. Измеряется в кДж/моль и значения обычно бывают в границах 50-250.

    Принято считать, что если Е а =150 кДж/моль для какой-либо реакции, то при н. у. она практически не протекает. Эта энергия тратится на преодоление отталкивания между молекулами веществ и на ослабление связей в исходных веществах. Иными словами, энергия активации характеризует прочность химических связей в веществах. По значению энергии активации можно предварительно оценить скорость химической реакции:

    • Е а < 40, взаимодействие веществ происходят довольно быстро, поскольку почти все столкнове-ния частиц при-водят к их реакции;
    • 40-<Е а <120, предполагается средняя реакция, поскольку эффективными будет лишь половина соударений молекул (например, реакция цинка с соляной кислотой);
    • Е а >120, только очень малая часть стол-кновений частиц приведет к реакции, и скорость ее будет низкой.

    Влияние концентрации

    Зависимость скорости реакции от концентрации вернее всего характеризуется законом действующих масс (ЗДМ), который гласит:

    Скорость химической реакции имеет прямо пропорциональную зависимость от произведения концентраций, вступивших в реакцию веществ, значения которых взяты в степенях, соответствующих им стехиометрическим коэффициентам.

    Этот закон подходит для элементарных одностадийных реакций, или же какой-либо стадии взаимодействия веществ, характеризующегося сложным механизмом.

    Если требуется определить скорость химической реакции, уравнение которой можно условно записать как:

    αА+ bB = ϲС, то,

    в соответствии с выше обозначенной формулировкой закона, скорость можно найти по уравнению:

    V=k·[A] a ·[B] b , где

    a и b - стехиометрические коэффициенты,

    [A] и [B] - концентрации исходных соединений,

    k - константа скорости рассматриваемой реакции.

    Смысл коэффициента скорости химической реакции заключается в том, что ее значение будет равно скорости, если концентрации соединений будут равны единицам. Следует отметить, что для правильного расчета по этой формуле стоит учитывать агрегатное состояние реагентов. Концентрацию твердого вещества принимают равной единице и не включают в уравнение, поскольку в ходе реакции она остается постоянной. Таким образом, в расчет по ЗДМ включают концентрации только жидких и газообразных веществ. Так, для реакции получения диоксида кремния из простых веществ, описываемой уравнением

    Si (тв) + Ο 2(г) = SiΟ 2(тв) ,

    скорость будет определяться по формуле:

    Типовая задача

    Как изменилась бы скорость химической реакции монооксида азота с кислородом, если бы концентрации исходных соединений увеличили в два раза?

    Решение: Этому процессу соответствует уравнение реакции:

    2ΝΟ + Ο 2 = 2ΝΟ 2 .

    Запишем выражения для начальной (ᴠ 1) и конечной (ᴠ 2) скоростей реакции:

    ᴠ 1 = k·[ΝΟ] 2 ·[Ο 2 ] и

    ᴠ 2 = k·(2·[ΝΟ]) 2 ·2·[Ο 2 ] = k·4[ΝΟ] 2 ·2[Ο 2 ].

    ᴠ 1 /ᴠ 2 = (k·4[ΝΟ] 2 ·2[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

    ᴠ 2 /ᴠ 1 = 4·2/1 = 8.

    Ответ: увеличилась в 8 раз.

    Влияние температуры

    Зависимость скорости химической реакции от температуры была определена опытным путем голландским ученым Я. Х. Вант-Гоффом. Он установил, что скорость многих реакций возрастает в 2-4 раза с повышением температуры на каждые 10 градусов. Для этого правила имеется математическое выражение, которое имеет вид:

    ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 , где

    ᴠ 1 и ᴠ 2 - соответствующие скорости при температурах Τ 1 и Τ 2 ;

    γ - температурный коэффициент, равен 2-4.

    Вместе с тем это правило не объясняет механизма влияния температуры на значение скорости той или иной реакции и не описывает всей совокупности закономерностей. Логично сделать вывод о том, что с повышением температуры, хаотичное движение частиц усиливается и это провоцирует большее число их столкновений. Однако это не особо влияет на эффективность соударения молекул, поскольку она зависит, главным образом, от энергии активации. Также немалую роль в эффективности столкновения частиц имеет их пространственное соответствие друг другу.

    Зависимость скорости химической реакции от температуры, учитывающая природу реагентов, подчиняется уравнению Аррениуса:

    k = А 0 ·е -Еа/RΤ , где

    А о - множитель;

    Е а - энергия активации.

    Пример задачи на закон Вант-Гоффа

    Как следует изменить температуру, чтобы скорость химической реакции, у которой температурный коэффициент численно равен 3, выроста в 27 раз?

    Решение. Воспользуемся формулой

    ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 .

    Из условия ᴠ 2 /ᴠ 1 = 27, а γ = 3. Найти нужно ΔΤ = Τ 2 -Τ 1 .

    Преобразовав исходную формулу получаем:

    V 2 /V 1 =γ ΔΤ/10 .

    Подставляем значения: 27=3 ΔΤ/10 .

    Отсюда понятно, что ΔΤ/10 = 3 и ΔΤ = 30.

    Ответ: температуру следует повысить на 30 градусов.

    Влияние катализаторов

    В физической химии скорость химических реакций активно изучает также раздел, называемый катализом. Его интересует, как и почему сравнительно малые количества тех или иных веществ существенно увеличивают скорость взаимодействия других. Такие вещества, которые могут ускорять реакцию, но сами при этом в ней не расходуются, называются катализаторами.

    Доказано, что катализаторы меняют механизм самого химического взаимодействия, способствуют появлению новых переходных состояний, для которых характерны меньшие высоты энергетического барьера. То есть они способствуют снижению энергии активации, а значит и увеличению количества эффективных ударений частиц. Катализатор не может вызвать реакцию, которая энергетически невозможна.

    Так пероксид водорода способен разлагаться с образованием кислорода и воды:

    Н 2 Ο 2 = Н 2 Ο + Ο 2 .

    Но эта реакция очень медленная и в наших аптечках она существует в неизменном виде довольно долгое время. Открывая лишь очень старые флаконы с перекисью, можно заметить небольшой хлопок, вызванный давлением кислорода на стенки сосуда. Добавление же всего нескольких крупинок оксида магния спровоцирует активное выделение газа.

    Та же реакция разложения перекиси, но уже под действием каталазы, происходит при обработке ран. В живых организмах находится много различных веществ, которые увеличивают скорость биохимических реакций. Их принято называть ферментами.

    Противоположный эффект на протекание реакций оказывают ингибиторы. Однако это не всегда плохо. Ингибиторы используют для защиты металлической продукции от коррозии, для продления срока хранения пищи, например, для предотвращения окисления жиров.

    Площадь соприкосновения веществ

    В том случае, если взаимодействие идет между соединениями, имеющими разные агрегатные состояния, или же между веществами, которые не способны образовывать гомогенную среду (не смешивающиеся жидкости), то еще и этот фактор влияет на скорость химической реакции существенно. Связано это с тем, что гетерогенные реакции осуществляются непосредственно на границе раздела фаз взаимодействующих веществ. Очевидно, что чем обширнее эта граница, тем больше частиц имеют возможность столкнуться, и тем быстрее идет реакция.

    Например, гораздо быстрее идет в виде мелких щепок, нежели в виде бревна. С той же целью многие твердые вещества растирают в мелкий порошок, прежде чем добавлять в раствор. Так, порошкообразный мел (карбонат кальция) быстрее действует с соляной кислотой, чем кусочек той же массы. Однако, помимо увеличения площади, данный прием приводит также к хаотичному разрыву кристаллической решетки вещества, а значит, повышает реакционную способность частиц.

    Математически скорость гетерогенной химической реакции находят, как изменение количества вещества (Δν), происходящее в единицу вре-мени (Δt) на единице поверхности

    (S): V = Δν/(S·Δt).

    Влияние давления

    Изменение давления в системе оказывает влияние лишь в том случае, когда в реакции принимают участие газы. Повышение давления сопровождается увеличением молекул вещества в единице объема, то есть концентрация его пропорционально возрастает. И наоборот, понижение давление приводит к эквивалентному уменьшению концентрации реагента. В этом случае подходит для вычисления скорости химической реакции формула, соответствующая ЗДМ.

    Задача. Как возрастет скорость реакции, описываемой уравнением

    2ΝΟ + Ο 2 = 2ΝΟ 2 ,

    если объем замкнутой системы уменьшить в три раза (Т=const)?

    Решение. При уменьшении объема пропорционально увеличивается давление. Запишем выражения для начальной (V 1) и конечной (V 2) скоростей реакции:

    V 1 = k· 2 ·[Ο 2 ] и

    V 2 = k·(3·) 2 ·3·[Ο 2 ] = k·9[ΝΟ] 2 ·3[Ο 2 ].

    Чтобы найти во сколько раз новая скорость больше начальной, следует разделить левые и правые части выражений:

    V 1 /V 2 = (k·9[ΝΟ] 2 ·3[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

    Значения концентраций и константы скорости сокращаются, и остается:

    V 2 /V 1 = 9·3/1 = 27.

    Ответ: скорость возросла в 27 раз.

    Подводя итог, нужно отметить, что на скорость взаимодействия веществ, а точнее, на количество и качество столкновений их частиц, влияет множество факторов. В первую очередь - это энергия активации и геометрия молекул, которые практически невозможно скорректировать. Что касается остальных условий, то для роста скорости реакции следует:

    • увеличить температуру реакционной среды;
    • повысить концентрации исходных соединений;
    • увеличить давление в системе или уменьшить ее объем, если речь идет о газах;
    • привести разнородные вещества к одному агрегатному состоянию (например, растворив в воде) или увеличить площадь их соприкосновения.