• Что можно приготовить из кальмаров: быстро и вкусно

    Ученые позиционируют животную клетку как основную часть организма представителя царства животных — как одноклеточных так и многоклеточных.

    Они являются эукариотическими, с наличием истинного ядра и специализированных структур — органелл, выполняющих дифференцированные функции.

    Растения, грибы и протисты имеют эукариотические клетки, у бактерий и архей определяются более простые прокариотические клетки.

    Строение животной клетки отличается от растительной . Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих ).

    Рисунок животной клетки с подписями

    Клетка состоит из множества специализированных органелл, выполняющих различные функции.

    Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.

    Основные органеллы и органоиды животной клетки

    Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.

    Ядро

    Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) — генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.

    Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы . Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.

    Ядро регулирует рост и деление клетки. При в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.

    Рибосомы

    Рибосомы — место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.

    Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.

    Эндоплазматический ретикулум

    Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.

    Существует два вида эндоплазматического ретикулума:

    • гранулярный;
    • агранулярный.

    Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.

    Везикулы

    Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.

    Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.

    Аппарат Гольджи

    Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).

    Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.

    Митохондрии

    В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».

    Цитоплазма клетки

    Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.

    Цитозоль

    Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).

    Цитоскелет

    Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.

    Он выполняет следующие функции:

    • придает форму;
    • обеспечивает прочность;
    • стабилизирует ткани;
    • закрепляет органеллы на определенных местах;
    • играет важную роль в передаче сигналов.

    Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.

    Клеточная мембрана

    Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.

    Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.

    Клеточная мембрана избирательно проницаема — она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.

    Лизосомы

    Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.

    Центриоль

    Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.

    Как выглядит животная клетка под микроскопом

    Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.

    Не вызывают сомнений следующие части:

    • ядро;
    • цитоплазма;
    • клеточная мембрана.

    Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.

    Функции центриоли

    Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.

    Строение клетки человека - рисунок с подписями

    Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.

    Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.

    Признаки живой клетки

    Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.

    Отличительные признаки растительной и животной клетки в таблице

    Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:

    Признак Растительная Животная
    Получение питания Автотрофный.

    Фотосинтезирует питательные вещества

    Гетеротрофный. Не производит органику.
    Хранение питания В вакуоли В цитоплазме
    Запасной углевод крахмал гликоген
    Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
    Клеточный центр и центриоли У низших растений У всех типов
    Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

    Основные компоненты являются сходными как для частиц растительного, так и животного мира.

    Заключение

    Животная клетка является сложным действующим организмом, обладающим отличительными признаками, функциями, целью существования. Все органеллы и органоиды вносят свою лепту в процесс жизнедеятельности этого микроорганизма.

    Некоторые компоненты изучены учеными, функции же и особенности других еще только предстоит открыть.

    Органоиды (органеллы) - постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции.

    Различают: мембранные органоиды - имеющие мембранное строение, причем они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двумембранными (митохондрии, пластиды, ядро).

    Кроме мембранных могут быть и немембранные органоиды - не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

    Одномембранные органоиды:

    1. Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой - с наружной оболочкой ядерной мембраны. Различают два вида ЭПР: шероховатый (гранулярный), содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков, и гладкий (агранулярный), мембраны которого рибосом не несут.

    Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций, Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.

    2. Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

    Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из простых сахаров, созревание белков, образование лизосом.

    3. Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов, активных в слабокислой среде.

    Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.



    Различают: первичные лизосомы - лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме, и вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис, поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями).

    Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

    Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).

    4. Реснички и жгутики. Образованы девятью сдвоенными микротрубочками, образующими стенку цилиндра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека.

    Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет.

    5. К одномембранным органоидам относятся также и вакуоли , окруженные мембраной - тонопластом. В растительных клетках могут занимают до 90% объема клетки и обеспечивают поступление воды в клетку за счет высокого осмотического потенциала и тургор (внутриклеточное давление). В животных клетках вакуоли небольшие, образуются за счет эндоцитоза (фагоцитозные и пиноцитозные), после слияния с первичными лизосомами называются пищеварительными вакуолями.

    Двумембранные органоиды:

    1. Митохондрии . Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.

    Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания или трубчатые выросты - кристы . Число крист может колебаться от нескольких десятков до нескольких сотен и даже тысяч, в зависимости от функций клетки. Они увеличивают поверхность внутренней мембраны, на которой размещаются ферментные системы, участвующие в синтез молекул АТФ.

    Внутреннее пространство митохондрий заполнено матриксом . Вматриксе содержатся кольцевая молекула митохондриальной ДНК специфические иРНК, тРНК и рибосомы (прокариотического типа) осуществляющие автономный биосинтез части белков, входящих состав внутренней мембраны. Эти факты свидетельствуют в пользу происхождения митохондрий от бактерий-окислителей (согласно гипотезе симбиогенеза). Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления.

    Функции митохондрий - кислородное расщепление углеводов аминокислот, глицерина и жирных кислот с образованием АТФ, синтез митохондриальных белков.

    2. Пластиды . Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды, обычно желтого, красного и оранжевого цвета, хлоропласты - зеленые пластиды. Пластиды образуются из пропластид - двумембранных пузырьков размером до 1 мкм.

    Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит пpeвращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

    Хлоропласты. Основная функция - фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результат образования выпячиваний внутренней мембраны возникает система ламелл и тилакоидов. Внутренняя среда хлоропластов - строма содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии. Факты, согласно гипотезе симбиогенеза, также свидетельствуют в пользу происхождения пластид от цианобактерий.


    Рис. Современная (обобщённая) схема строения растительной клетки , составленная по данным электронно-микроскопического исследования разных растительных клеток: 1 - аппарат Гольджи; 2 - свободно расположенные рибосомы; 3 - хлоропласты; 4 - межклеточные пространства; 5 - полирибосомы (несколько связанных между собой рибосом); 6 - митохондрии; 7 - лизосомы; 8 - гранулированная эндоплазматическая сеть; 9 - гладкая эндоплазматическая сеть; 10 - микротрубочки; 11 - пластиды; 12 - плазмодесмы, проходящие сквозь оболочку; 13 - клеточная оболочка; 14 - ядрышко; 15, 18 - ядерная оболочка; 16 - поры в ядерной оболочке; 17 - плазмалемма; 19 - гиалоплазма; 20 - тонопласт; 21 - вакуоли; 22 - ядро.

    Рис. Строение мембраны

    Рис. Строение митохондрии . Вверху и в середине - вид продольного среза через митохондрию (вверху - митохондрия из эмбриональной клетки кончика корня; в середине - из клетки взрослого листа элодеи). Внизу - трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - кристы; 4 - матрикс.



    Рис. Строение хлоропласта . Слева - продольный разрез через хлоропласт: 1 - граны, образованные ламеллами, сложенными стопками; 2 - оболочка; 3 - строма (матрикс); 4 - ламеллы; 5 - капли жира, образовавшегося в хлоропласте. Справа - трехмерная схема расположения и взаимосвязи ламелл и гран внутри хлоропласта: 1 - граны; 2 - ламеллы.

    Тип урока : комбинированный.

    Методы : словесный, наглядный, практический, проблемно-поисковый.

    Цели урока

    Образовательная: углубить знания учащихся о строении клеток эукариот, научить применять их на практических занятиях.

    Развивающие: совершенствовать умения учащихся работать с дидактическим материалом; развивать мышление учащихся, предлагая задания для сравнения клеток прокариот и эукариот, клеток растений и клетки животных с выявлением схожих и отличительных признаков.

    Оборудование : плакат «Строение цитоплазматической мембраны»; карточки-задания; раздаточный материал (строение прокариотической клетки, типичная растительная клетка, строение животной клетки).

    Межпредметные связи : ботаника, зоология, анатомия и физиология человека.

    План урока

    I. Организационный момент

    Проверка готовности к уроку.
    Проверка списочного состава учащихся.
    Сообщение темы и целей урока.

    II. Изучение нового материала

    Разделение организмов на про- и эукариоты

    По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).

    Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.

    Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е. все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.

    После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки (рис. 1).

    Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной). К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.

    Отличия эукариот от прокариот

    – Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
    – Включенные в цитоплазму органоиды окружены мембраной.

    Строение клеток растений и животных

    Клетка любого организма представляет собой сис-тему. Она состоит из трех взаимосвязанных между собой частей: оболочки, ядра и цитоплазмы.

    При изучении ботаники, зоологии и анатомии человека вы уже знакомились со строением различных типов клеток. Кратко повторим этот материал.

    Задание 1. Определите по рисунку 2, каким организмам и типам тканей соответствуют клетки под цифрами 1–12. Чем обусловлена их форма?

    Строение и функции органоидов растительных и животных клеток

    Используя рисунки 3 и 4 и пользуясь Биологическим энциклопедическим словарем и учебником, учащиеся заполняют таблицу, сравнивая животную и растительную клетки.

    Таблица. Строение и функции органоидов растительных и животных клеток

    Органоиды клетки

    Строение органоидов

    Функция

    Присутствие органоидов в клетках

    растений

    животных

    Хлоропласт

    Представляет собой разновидность пластид

    Окрашивает растения в зеленый цвет, в нем происходит фотосинтез

    Лейкопласт

    Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды

    Синтезирует и накапливает крахмал, масла, белки

    Хромопласт

    Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами

    Красная, желтая окраска осенних листьев, сочных плодов и др.

    Занимает до 90% объема зрелой клетки, заполнена клеточным соком

    Поддержание тургора, накопление запасных веществ и продуктов обмена, регуляция осмотического давления и др.

    Микротрубочки

    Состоят из белка тубулина, расположены около плазматической мембраны

    Участвуют в отложении целлюлозы на клеточных стенках, перемещении в цитоплазме различных органоидов. При делении клетки микротрубочки составляют основу структуры веретена деления

    Плазматическая мембрана (ЦПМ)

    Состоит из липидного бислоя, пронизанного белками, погруженными на различную глубину

    Барьер, транспорт веществ, сообщение клеток между собой

    Гладкий ЭПР

    Система плоских и ветвящихся трубочек

    Осуществляет синтез и выделение липидов

    Шероховатый ЭПР

    Название получил из-за множества рибосом, находящихся на его поверхности

    Синтез белков, их накопление и преобразование для выделения из клетки наружу

    Окружено двойной ядерной мембраной, имеющей поры. Наружная ядерная мембрана образует непрерывную структуру с мембраной ЭПР. Содержит одно или несколько ядрышек

    Носитель наследственной информации, центр регуляции активности клетки

    Клеточная стенка

    Состоит из длинных молекул целлюлозы, собранных в пучки, называемые микрофибриллами

    Внешний каркас, защитная оболочка

    Плазмодесмы

    Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки

    Объединяют протопласты соседних клеток

    Митохондрии

    Синтез АТФ (аккумуляция энергии)

    Аппарат Гольджи

    Состоит из стопки плоских мешочков – цистерн, или диктиосом

    Синтез полисахаридов, формирование ЦПМ и лизосом

    Лизосомы

    Внутриклеточное пищеварение

    Рибосомы

    Состоят из двух неравных субъединиц –
    большой и малой, на которые могут диссоциировать

    Место биосинтеза белка

    Цитоплазма

    Состоит из воды с большим количеством растворенных в ней веществ, содержащих глюкозу, белки и ионы

    В ней расположены другие органоиды клетки и осуществляются все процессы клеточного метаболизма

    Микрофиламенты

    Волокна из белка актина, обычно располагаются пучками вблизи поверхности клеток

    Участвуют в подвижности и изменении формы клеток

    Центриоли

    Могут входить в состав митотического аппарата клетки. В диплоидной клетке содержится две пары центриолей

    Участвуют в процессе деления клетки у животных; в зооспорах водорослей, мхов и у простейших образуют базальные тельца ресничек

    Микроворсинки

    Выступы плазматической мембраны

    Увеличивают наружную поверхность клетки, микроворсинки в совокупности образуют кайму клетки

    Выводы

    1. Клеточная стенка, пластиды и центральная вакуоль присущи только растительным клеткам.
    2. Лизосомы, центриоли, микроворсинки присутствуют в основном только в клетках животных организмов.
    3. Все остальные органоиды характерны как для растительных, так и для животных клеток.

    Строение оболочки клеток

    Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно-белковая составляющая.

    Функции клеточной оболочки:

    – поддерживает форму клетки и придает механическую прочность клетке и организму в целом;
    – защищает клетку от механических повреждений и попадания в нее вредных соединений;
    – осуществляет узнавание молекулярных сигналов;
    – регулирует обмен веществ между клеткой и средой;
    – осуществляет межклеточное взаимодействие в многоклеточном организме.

    Функция клеточной стенки:

    – представляет собой внешний каркас – защитную оболочку;
    – обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

    Наружный слой клеток животных, в отличие от клеточных стенок растений, очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток называется гликокаликсом , выполняет функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами, опорной роли не выполняет.

    Под гликокаликсом животной и клеточной стенкой растительной клетки расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. В состав плазматической мембраны входят белки и липиды. Они расположены упорядоченно за счет различных химических взаимодействий друг с другом. Молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной липидный бислой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белков и липидов подвижны.

    Функции плазматической мембраны:

    – образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды;
    – обеспечивает транспорт веществ;
    – обеспечивает связь между клетками в тканях многоклеточных организмов.

    Поступление веществ в клетку

    Поверхность клетки не сплошная. В цитоплазматической мембране есть многочисленные мельчайшие отверстия – поры, через которые с помощью или без помощи специальных белков, внутрь клетки могут проникать ионы и мелкие молекулы. Кроме того, некоторые ионы и мелкие молекулы могут попадать в клетку непосредственно через мембрану. Поступление важнейших ионов и молекул в клетку не пассивная диффузия, а активный транспорт, требующий затрат энергии. Транспорт веществ носит избирательный характер. Избирательная проницаемость клеточной мембраны носит название полупроницаемости .

    Путем фагоцитоза внутрь клетки поступают: крупные молекулы органических веществ, например белков, полисахаридов, частицы пищи, бактерии. Фагоцитоз осуществляется с участием плазматической мембраны. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной капсуле» погружается внутрь клетки. Образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества.

    Путем фагоцитоза питаются амебы, инфузории, лейкоциты животных и человека. Лейкоциты поглощают бактерии, а также разнообразные твердые частицы, случайно попавшие в организм, защищая его таким образом от болезнетворных бактерий. Клеточная стенка растений, бактерий и синезеленых водорослей препятствует фагоцитозу, и потому этот путь поступления веществ в клетку у них не реализуется.

    Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.Это явление было названо пиноцитозом . Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме. Пиноцитоз широко распространен в природе и осуществляется клетками всех животных.

    III. Закрепление изученного материала

    На какие две большие группы разделяются все организмы по строению ядра?
    Какие органоиды свойственны только растительным клеткам?
    Какие органоиды свойственны только животным клеткам?
    Чем различается строение оболочки клеток растений и животных?
    Каковы два способа поступления веществ в клетку?
    Каково значение фагоцитоза для животных?

    Наука, изучающая строение и функции клеток, называется цитология .

    Клетка - элементарная структурная и функциональная единица живого.

    Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы .

    Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки - органеллы (органоиды).

    Клеточное ядро

    Клеточное ядро - это важнейшая часть клетки.
    От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.
    Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока . В ядерном соке расположены хроматин и ядрышко .
    Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами .

    Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

    Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления - разрушаются.

    Функция ядрышек - синтез РНК и белков, из которых формируются особые органоиды - рибосомы .
    Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети . Реже они свободно взвешены в цитоплазме клетки.

    Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

    Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи . Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.
    Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы - пищеварительные органеллы клетки.
    Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.
    В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

    Митохондрии - энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

    Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы.

    Плазматическая мембрана

    Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана , которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

    Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие - пронизывают оба слоя липидов насквозь.

    Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ - белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

    • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
    • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.

    Клетка представляет собой основную структурную и функциональную единицу всех живых существ и обладает всеми признаками живого: ростом, обменом веществ и энергией с окружающей средой, делением, раздражимо-стью, наследственностью и др. По степени сложности внутренней организации клетки можно разде-лить на 2 типа: прокариотические и эукариотические. У прокариотов, в от-личие от эукариотов, нет оформленного ядра, хромосом, пластид, митохонд-рий, эндоплазматического ретикулума, аппарата Гольджи, отсутствуют ми-тоз и типичный половой процесс. К эукариотическим организмам, наряду с животными и грибами, отно-сятся и растения. Они обладают сходным строением клеток, что связано с единым происхождением. В типичном случае растительная клетка состоит из:

    • протопласта (жи-вого содержимого),
    • окружающей его оболочки — клеточной стенки.

    Общий протопласт можно подразделить на цитоплазму и ядро.

    Цитоплазма состоит из гиалоплазмы и органелл. Гиалоплазма представляет собой непре-рывную водную коллоидную фазу клетки и обладает определенной вязко-стью. Она способна к активному движению за счет трансформации химиче-ской энергии в механическую. Гиалоплазма связывает все находящиеся в ней органеллы, обеспечивая их постоянное взаимодействие. Через нее идет транспорт аминокислот, жирных кислот, нуклеотидов, сахаров, неорганиче-ских ионов, перенос АТФ. Органеллы — это структурно-функциональные единицы цитоплазмы. В клетке выделяют три типа органелл: немембранные, одномембранные и дву-мембранные.

    Пластиды встречаются только в растительных клетках. Выделяют три типа пластид (хлоро-, лейко- и хромопласты), которые отличаются друг от друга составом пигментов (цветом), строением и выполняемыми функциями.

    Хлоропласты содержат зеленый пигмент хлорофилл, который находится в хлоропластах в нескольких фор-мах, имеют линзовидную форму и сложное строение. Снаружи они ограничены оболочкой, состоящей из двух мембран. Основная функция хлоропластов — фотосинтез. Кроме того, в них, как и в митохондри-ях, происходит процесс образования АТФ из АДФ, который называется фо-тофосфорилированием.

    Лейкопласты — бесцветные мелкие пластиды, встречающиеся в запа-сающих органах растений (клубнях, корневищах, семенах и т. д.). Для лей-копластов характерно слабое развитие внутренней системы мембран, пред-ставленной одиночными тилакоидами, иногда трубочками и пузырьками. Основная функция лейкопластов — синтез и накопление запасных питательных веществ, в пер-вую очередь крахмала, иногда белков.

    Пластиды, окрашенные в желтый, оранжевый, красный цвета, носят название хромопластов. Их можно встретить в лепестках (лютик, одуван-чик, тюльпан), корнеплодах (морковь), зрелых плодах (томат, роза, рябина, хурма) и осенних листьях. Яркий цвет хромопластов обусловлен наличием каротиноидов, растворенных в пластоглобулах. Внутренняя система мем-бран в данном типе пластид, как правило, отсутствует. Хромопласты имеют косвенное биологическое значение: яркая окраска лепестков и плодов при-влекает опылителей и распространителей плодов.

    Вакуоли содержатся почти во всех растительных клетках. Они пред-ставляют собой полости, заполненные клеточным соком и ограниченные от цитоплазмы мембраной — тонопластом. Для большинства зрелых клеток растений характерна центральная вакуоль. Она, как правило, настолько крупна (70-90 % объема клетки), что протопласт со всеми органеллами рас-полагается в виде очень тонкого постенного слоя. Клеточный сок, содержа-щийся в вакуоли, представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта. Вакуоли в растительных клетках выполняют две основные функции: накопление запасных веществ, отходов и поддержание тургора.

    Клеточная оболочка — структурное образование на периферии клетки, придающее ей прочность, сохраняющее ее форму и защищающее прото-пласт. Оболочка, как правило, бесцветна и прозрачна, легко пропускает сол-нечный свет. По ней могут передвигаться вода и растворенные низкомолеку-лярные вещества. Оболочки соседних клеток соединены пектиновыми веще-ствами, образующими срединную пластинку.

    Скелетным веществом оболочки клеток высших растений является целлюлоза. Молекулы целлюлозы, представляющие собой очень длинные це-пи, собраны по нескольку десятков в группы — микрофибриллы. В них моле-кулы располагаются параллельно друг другу и «сшиты» многочисленными водородными связями. Они обладают эластичностью, высокой прочностью и создают структурный каркас оболочки, а также погружены в ее аморфный матрикс, состоящий в основном из гемицеллюлоз и пектиновых веществ.

    В образовании структурных элементов клеточной оболочки принима-ют участие:

    • плазмалемма,
    • аппарат Гольджи,
    • микротрубочки.

    На плазмалемме происходит синтез микрофибрилл целлюлозы, а микротрубочки способ-ствуют их ориентации. Аппарат Гольджи выполняет функцию образования веществ матрикса оболочки, в частности гемицеллюлоз и пектиновых ве-ществ.

    Различают первичную и вторичную клеточные оболочки. Меристематические и молодые растущие клетки, реже клетки постоянных тканей, име-ют первичную оболочку, тонкую, богатую пектином и гемицеллюлозой. Вторичная клеточная оболочка образуется по достижении клеткой оконча-тельного размера и накладывается слоями на первичную со стороны прото-пласта. Она обычно трехслойная, с большим содержанием целлюлозы.

    Включения — это локальная концентрация некоторых продуктов обме-на в определенных местах клетки.

    Крахмальные зерна образуются только в строме пластид живых кле-ток. В хлоропластах на свету откладываются зерна ассимиляционного (пер-вичного) крахмала. Значительно большего объема достигают зерна запасного (вторичного) крахмала, откладывающиеся в лейкопластах (амилопластах). Различают простые, полусложные и сложные зерна.

    Липидные капли накапливаются в гиалоплазме. Наиболее богаты ими семена и плоды, где они могут быть преобладающим по объему компонен-том протопласта.

    Запасные белки чаще всего откладываются в вакуолях в виде зерен ок-руглой или овальной формы, называемых алейроновыми. Бывают простыми и сложными (кристаллиты, глобоиды).

    Кристаллы оксалата кальция — конечные продукты обмена; откла-дываются обычно в вакуолях.

    Ядро представляет собой обязательный органоид живой клетки. Оно всегда располагается в цитоплазме. В молодой клетке ядро обычно занимает центральное положение. Иногда оно остается в центре клетки, и окружено цитоплазмой (т. н. ядерный кармашек), которая связана с постенным слоем тонкими тяжами. Ядро отделено от цитоплазмы двумембранной ядерной оболочкой, пронизанной многочисленными порами. Содержимое интерфазного (неде-лящегося) ядра составляют нуклеоплазма и погруженные в нее оформленные элементы — ядрышки и хроматин.

    Ядрышки — сферические, довольно плотные тельца, состоящие из ри- босомальной РНК, белков и небольшого количества ДНК. Их основная функция — синтез р-РНК и образование рибонуклеопротеидов (рРНК+белок), т. е. предшественников рибосом. Хроматин содержит почти всю ДНК ядра. В интерфазном ядре он имеет вид длинных тонких нитей, представляющих собой двойную спираль ДНК, закрученную в виде рыхлых спиралей более высокого порядка (супер-спиралей). ДНК связана с белками-гистонами, располагающимися подобно бусинкам на ее нити. Хроматин, будучи местом синтеза различных РНК (транскрипции), представляет собой особое состояние хромосом, выявляю-щихся при делении ядра. Можно сказать, что хроматин — это функциони-рующая, активная форма хромосом. Хромосомы присутствуют в ядре всегда, но в интерфаз-ной клетке не видны, потому что находятся в деконденсированном (разрых-ленном) состоянии.

    Социальные кнопки для Joomla

    «Органоидом, в котором происходит синтез белка, является: А – рибосома Б – ЭПС В – клеточная мембрана Г – митохондрии Фотосинтез и биосинтез – это примеры процессов: А – обмена веществ Б – …»

    Вариант №1.

    Органоидом, в котором происходит синтез белка, является:

    А – рибосома Б – ЭПС В – клеточная мембрана Г – митохондрии

    Фотосинтез и биосинтез – это примеры процессов:

    А – обмена веществ Б – дыхания В – выделения Г – саморегуляцииК реакциям энергетического обмена относят:

    А – окисление глюкозы Б – растворение солей натрия в воде

    Б – синтез белков В – фотосинтез

    Клетки каких организмов в своём составе имеют плотную оболочку, кольцевую ДНК, рибосомы и плазматическую мембрану?

    А – растений Б – бактерий В – грибов Г – животных

    Гетеротрофные организмы способны:

    В – использовать только готовые органические вещества

    Г – создавать органические вещества из минеральныхБиосинтез белков начинается с синтеза:

    А – ДНК Б – иРНК В – гена Г – мутации

    В третичной структуре белковой молекулы присутствуют:

    А – водородные связи Б- пептидные связи

    Внутренняя мембрана митохондрий называется:

    Органоид, в котором происходит окисление питательных веществ и образование АТФ, называется:

    А – рибосома Б – аппарат Гольджи В – ядро Г – митохондрия

    Исходными веществами для фотосинтеза являются:

    А – углекислый газ и вода Б – белки и углеводы

    В – кислород и вода Г – глюкоза и кислород

    Определите связь между объектами и функциями, которую они выполняют:

    Рибосомы А – фотосинтез

    Ядро Б – деление клетки

    Клеточный центр В — хранение и передача наследственных признаков

    Хлоропласт Г – биосинтез белка

    Какова последовательность процесса редупликации ДНК?

    А – раскручивание спирали молекулы;

    Б – воздействие ферментов ДНК-полимеразы на молекулу;

    В – отделение одной цепи от другой на части молекулы ДНК;

    Г – присоединение к каждой цепи ДНК комплементарных нуклеотидов

    Д – образование двух молекул ДНК из одной

    Вариант №1. Вариант №2.

    1 – г; 2 – в; 3 – б; 4 – а 1 – б, г.

    2 – а, в, д.А В Б Г Д А В Б Г

    Вариант №2.

    В прокариотических клетках есть:

    А – ядро Б – митохондрии В – аппарат Гольджи Г – рибосомы

    В лизосомах клетки, как и в митохондриях, происходит:

    А – фотосинтез Б – хемосинтез В – энергетический обмен Г – пластический обмен

    Богатые энергией связи в молекулах АТФ называют:

    А – ковалентными Б – водородными В – макроэргическими Г – гидрофобными

    Вторичная структура белковой молекулы представлена в виде:

    А – глобулы Б – цепи В – спирали Г – сложного кома

    Автотрофные организмы способны:

    А – поглощать солнечную энергию

    Б – впитывать неорганические вещества из почвы

    В – создавать органические вещества из минеральныхГ – всё перечисленное

    Одна аминокислота зашифрована:

    А – одним нуклеотидом Б – тремя нуклеотидами

    В – двумя нуклеотидами Г – всё перечисленное

    При энергетическом обмене образуется:

    А – 2 молекулы АТФ Б – 36 молекул АТФ

    В – 38 молекул АТФ Г – 1 молекула АТФ

    Внутренняя мембрана хлоропласта называется:

    А – гранами Б – стромой В – кристами Г – цитоплазмой

    Транскрипция – это…

    А – первый этап биосинтеза белка

    Б – световая фаза фотосинтеза

    В – второй этап биосинтеза белка

    Г – темновая фаза фотосинтеза

    В первичной структуре белковой молекулы присутствуют:

    А – водородные связи Б — пептидные связи

    В – дисульфидные мостики Г – ионные связи

    Установите соответствие между строением, функцией органоидов и их видом:

    А – содержит граны 1. Митохондрии

    Б – содержит кристы 2. Хлоропласты

    В – обеспечивают образование кислорода

    Г – обеспечивают окисление органических веществ

    Д – содержит зеленый пигмент

    Установите последовательность процессов, в которых участвует тРНК.

    А – присоединение аминокислоты к тРНК.

    Б – образование водородных связей между комплементарными нуклеотидами иРНК и тРНК.

    В – перемещение тРНк с аминокислотой к рибосоме.

    Г – отрыв аминокислоты от тРНК.

    Похожие работы:

    «ПРИЛОЖЕНИЕ 1. Аналитический отчет о выполнении плана по устранению нарушений и улучшению деятельности за 1,2 квартал 2016 г. ГБУЗ ПК "ГСП № 3" Территориальное управление Министерства здравоохранения Пермского края №п/п Выявленное нарушение Мероприятия/действия по уст…»

    «Гр. дело №2-134/2016г. Решение Именем Российской Федерации 26 июля 2016 года мировой судья судебного участка №61 района Ясенево г. Москвы Глотова Н.П., при секретаре Егоровой Н.Н., рассмотрев в открытом судебном заседании гражда…»

    «Отчёт по выставке ЧЕМПИОНАТ Association of Feline Clubs http://afclubs.ruе-mail: [email protected] Клуб организатор ОО "РКФЦ "Гранд+" Название выставки "Удивительные кошки" № лицензии 004/2013 Ханты-Мансийский Дата проведения 03….»

    «III ВСЕРОССИЙСКИЙ (XVIIIОТКРЫТЫЙ УРАЛЬСКИЙ РЕГИОНАЛЬНЫЙ) КОНКУРС МОЛОДЫХ ИСПОЛНИТЕЛЕЙ НА НАРОДНЫХ ИНСТРУМЕНТАХ ИМЕНИ В.В. ЗНАМЕНСКОГО г. Екатеринбург, 24 – 28 марта 2016 года Номинация "Ансамбли народных инструментов (не более 11 человек)" Возрастная группа В) средняя групп…»

    «АДМИНИСТРАЦИЯ ГОРОДА КРАСНОЯРСКАПОСТАНОВЛЕНИЕ от 17 июня 2011 г. N 233ОБ УТВЕРЖДЕНИИ ТАРИФОВ НА ПЛАТНЫЕ ДОПОЛНИТЕЛЬНЫЕОБРАЗОВАТЕЛЬНЫЕ УСЛУГИ, ОКАЗЫВАЕМЫЕ МУНИЦИПАЛЬНЫМИОБРАЗОВАТЕЛЬНЫМИ УЧРЕЖДЕНИЯМИ ГОРОДА КРАСНОЯРСКАНа основании решения городской комисс…»

    «Открытый урок по английскому языку на тему: " Beatles"Цель: Познакомить с музыкальными традициями страны, изучаемого языка, расширить кругозор учащегося и повысить интерес к изучению английского языка.Задачи: Воспитывать чувство прекрасного по средствам музыки и текста. Обучать умению слушать и понимать английскую речь, извлекать нужную информаци…»

    «ОСНОВНАЯ ИНФОРМАЦИЯ ОБ ОТЕЛЕ РАСПОЛОЖЕНИЕ: Новый отель Hurawalhi находится в атолле Лавиани, это единственный резорт на острове 400 на 165 метров, площадью 6,5 гектаров. В отель с красивейшей лагуной, превосходн…»

    «ВВОДНЫЙ ТЕКСТ В ПРОЕКТ (ДЛЯ ВСЕХ УЧАЩИХСЯ) Canadа Canada is the second largest country in the world. Only Russia has a greater land area. Canada is situated in North America. Canada is slightly larger than the United States, but has only about a tenth as many people. About 28 million peop…»

    «Тема: Свойства параллельных прямых в пространствеВозможны четыре различных случая расположения двух прямых в пространстве: прямые скрещивающиеся, т.е. не лежат в одной плоскости; прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку; прямые параллельные, т.е. лежат в одной плоскости и не п…»

    «РЕКОМЕНДАЦИИ К РАЗРАБОТКЕ системы классификации информации, несовместимой с задачами образования и воспитания учащихся и применения указанной системы классификации Настоящий Порядок содержит рекомендации, касающиеся порядка разработки системы классификации информации, н…»

    Клетка, особенно эукариотическая, представляет собой сложную открытую систему. Части этой системы, выполняя разные функции, обеспечивают ее целостность.

    Функциональность органоидов взаимосвязана и направлена на поддержание целостности клетки, сопротивление разрушающему воздействию окружающей среды, развитие клетки, ее деление.

    Ниже в форме таблицы приведены функции основных органоидов клетки эукариот. У прокариот нет ядра и мембранных органоидов. Функции последних выполняют впячивания цитоплазматической мембраны, на которых располагаются ферменты. По ссылкам можно получить более подробную информацию о строении и функциях клеточных органелл.

    Функции ядра (Строение ядра клетки):

    • Управление биохимическими процессами в клетке, за счет экспрессии определенных генов
    • Удвоение генетической информации перед делением
    • Синтез РНК, сборка субъединиц рибосом

    Гиалоплазма (цитоплазма без органоидов и включений):

    • Среда для протекания многих биохимических реакций
    • Движение гиалоплазмы обеспечивает перемещение органоидов и веществ
    • Объединяет части клетки в единое целое

    Клеточная мембрана — цитоплазматическая мембрана (Строение клеточной мембраны, Функции клеточной мембраны):

    • Барьерная функция – отделяет внутреннее содержимое клетки от внешней среды
    • Транспортная функция; обеспечивает в том числе избирательный транспорт веществ
    • Ферментативная функция, которую выполняют многие белковые молекулы и комплексы, погруженные в мембрану
    • Рецепторная функция
    • Фаго- и пиноцитоз (у ряда клеток)

    Функции клеточной стенки (Строение и функции клеточной стенки):

    • Каркасная функция
    • Препятствие растяжению и разрыву
    • Определяет форму клеток
    • Транспортная функция: клеточная стенка формирует сосуды ксилемы, трахеид, ситовидных трубок
    • Оболочки всех клеток обеспечивают растению опору, играют своего рода роль скелета
    • Иногда место запаса питательных веществ

    Рибосомы (Строение и функции рибосом):

    • Синтез полипептидных цепей за счет обеспечения связи между молекулами мРНК, тРНК и др., которые занимают в рибосоме «свои» места.

    Митохондрии (Строение митохондрии, Функции митохондрий):

    • Энергетическая станция клетки - синтез молекул АТФ за счет окислительно-восстановительных реакций; при этом потребляется кислород и выделяется углекислый газ.

    Хлоропласты (Строение хлоропласта):

    • Фотосинтез - синтез органических веществ из неорганических с использованием световой энергии. При этом поглощается углекислый газ и выделяется кислород.

    Эндоплазматическая сеть (Строение и функции эндоплазматической сети):

    • Мембрана ЭПС - место крепления существенной часть рибосом, синтезирующих полипептиды; после синтеза белок оказывается в каналах ЭПС, где происходит его созревание.
    • В каналах ЭПС происходит синтез липидов и углеводов
    • Транспорт веществ в комплекс Гольджи

    Аппарат Гольджи (Строение и функции комплекса Гольджи):

    • «Дозревание» (модификация) синтезированных в клетке веществ
    • Выведение их за пределы клетки
    • Построение клеточной мембраны
    • Образование лизосом

    Лизосомы (Строение и функции лизосомы):

    • Расщепление поступивших в клетку питательных веществ
    • Разрушение ненужных клетке органоидов
    • Автолиз (саморазрушение) клетки

    Функции пероксисом :

    • Разложение ядовитого для клеток пероксида водорода на кислород и воду.

    Функции клеточного центра (Строение клеточного центра):

    • Образование веретена деления при митозе и мейозе
    • Образование микротрубочек, базальных телец жгутиков и ресничек

    Биология человека

    Учебник для 8 класса

    Клеточное строение организма

    Внешне люди сильно отличаются друг от друга. Большие и маленькие, высокие и низкие, светлокожие и темнокожие… Присмотритесь к себе и своим друзьям и вы убедитесь, что каждый человек индивидуален. И все же в главном мы похожи: наши тела построены и функционируют по общим законам.

    Наше тело, как и тело всех многоклеточных организмов, состоит из клеток. Клеток в организме человека многие миллиарды - это его главный структурный и функциональный элемент.

    Кости, мышцы, кожа - все они построены из клеток. Клетки активно реагируют на раздражение, участвуют в обмене веществ, растут, размножаются, обладают способностью к регенерации и передаче наследственной информации.

    Клетки нашего организма очень разнообразны. Они могут быть плоскими, круглыми, веретенообразными, иметь отростки. Форма зависит от положения клеток в организме и выполняемых функций. Размеры клеток тоже различны: от нескольких микрометров (малый лейкоцит) до 200 микрометров (яйцеклетка). При этом, несмотря на такое многообразие, большинство клеток имеют единый план строения: состоят из ядра и цитоплазмы, которые снаружи покрыты клеточной мембраной {оболочкой).

    Ядро есть в каждой клетке, кроме эритроцитов. Оно несет наследственную информацию и регулирует образование белков. Наследственная информация обо всех признаках организма хранится в молекулах дезоксирибонуклеиновой кислоты (ДНК).

    ДНК является основным компонентом хромосом. У человека в каждой неполовой (соматической) клетке их 46, а в половой клетке 23 хромосомы. Хромосомы хорошо видны только в период деления клетки. При делении клетки наследственная информация в равных количествах передается дочерним клеткам.

    Снаружи ядро окружает ядерная оболочка, а внутри него находится одно или несколько ядрышек, в которых образуются рибосомы - органоиды, обеспечивающие сборку белков клетки.

    Ядро погружено в цитоплазму, состоящую из гиалоплазмы (от греч. «гиалинос» - прозрачный) и находящихся в ней органоидов и включений. Гиалоплазма образует внутреннюю среду клетки, она объединяет все части клетки между собой, обеспечивает их взаимодействие.

    Органоиды клетки - это постоянные клеточные структуры, выполняющие определенные функции. Познакомимся с некоторыми из них.

    Эндоплазматическая сеть напоминает сложный лабиринт, образованный множеством мельчайших канальцев, пузырьков, мешочков (цистерн). В некоторых участках на ее мембранах расположены рибосомы, такую сеть называют гранулярной (зернистой). Эндоплазматическая сеть участвует в транспорте веществ в клетке. В гранулярной эндоплазматической сети образуются белки, а в гладкой (без рибосом)- животный крахмал (гликоген) и жиры.

    Комплекс Гольджи представляет собой систему плоских мешочков (цистерн) и многочисленных пузырьков. Он принимает участие в накоплении и транспортировке веществ, которые образовались в других органоидах. Здесь также синтезируются сложные углеводы.

    Митохондрии - органоиды, основной функцией которых является окисление органических соединений, сопровождающееся высвобождением энергии. Эта энергия идет на синтез молекул аденозинтрифосфорной кислоты (АТФ), которая служит как бы универсальным клеточным аккумулятором. Энергию, заключенную в ЛТФ, клетки затем используют на различные процессы своей жизнедеятельности: выработку тепла, передачу нервных импульсов, мышечные сокращения и многое другое.

    Лизосомы, небольшие шарообразные структуры, содержат вещества, которые разрушают ненужные, утратившие свое значение или поврежденные части клетки, а также участвуют во внутриклеточном пищеварении.

    Снаружи клетка покрыта тонкой (около 0,002 мкм) клеточной мембраной, которая отграничивает содержимое клетки от окружающей среды. Основная функция мембраны - защитная, но она воспринимает также и воздействия внешней для клетки среды. Мембрана не сплошная, она полупроницаема, через нее свободно проходят некоторые вещества, г. е. она выполняет и транспортную функцию. Через мембрану осуществляется и связь с соседними клетками.

    Вы видите, что функции органоидов сложны и многообразны. Они играют для клетки ту же роль, что и органы для целостного организма.

    Продолжительность жизни клеток нашего организма различна. Так, некоторые клетки кожи живут 7 дней, эритроциты - до 4 месяцев, а вот костные клетки - от 10 до 30 лет.

    Проверьте свои знания

    1. Назовите основные органоиды клетки. Какова их роль?
    2. Какой формы бывают клетки? От чего это зависит?
    3. Какую роль играют в клетке молекулы ДНК?
    4. Сколько хромосом в половых и в соматических клетках человека?
    5. Каковы функции ядра?
    6. Расскажите о строении и роли эндоплазматической сети.
    7. Какие функции выполняет комплекс Гольджи?
    8. Почему митохондрии называют «аккумулятором» клетки?
    9. Какие органоиды принимают участие в разрушении и растворении частей клетки, утративших свое значение?

    Подумайте

    Почему клетку считают структурным и функциональным элемен том тела?

    Клетка - структурная и функциональная единица тела человека, органоиды - постоянные клеточные структуры, выполняющие определенные функции.

    Пластиды – автономные органеллы растительных клеток. Существуют следующие разновидности пластид:

    • Пропластиды
    • Лейкопласты
    • Этиопласты
    • Хлоропласты
    • Хромопласты

    Пропластиды имеются в меристематических тканях. У них внутренняя мембрана имеет лишь небольшие впячивания. Если в органеллах зрелых клеток сохраняется структура пропластид, их накзывают лейкопластами. В лейкопластах откладываются запасные вещества и названия они получают в зависимости от этих соединений:

    • Если крахмал – амилопласты
    • Жиры – элайопласты
    • Белки – протеинопласты

    Этиопласты формируются при выращивании растения в темноте. Хлорофилл в темноте не накапливается и растение остается белым или бледно-желтым. Междоузлия становятся тонкими и длинными. Все это называется этиоляцией, а сами растения – этиолированными. Хлоропласты в листьях не образуют нормальных мембранных систем и называются в таком виде этиопластами.

    При освещении этиопласты становятся хлоропластами.

    Хромопласты отличаются от других пластид своеобразной формой (дисковидной, зубчатой, серповидной, треугольной, ромбической и т.д.) В пузырьках стромы они содержат кристаллические каротиноиды, которые придают им желтую, оранжевую и красную окраску. Все типы пластид родственны друг другу. Одни их виды могут превращаться в другие.

    Хлоропласты имеют овальную форму. Диаметр составляет 3-4 мкм. В электронный микроскоп можно рассмотреть два вида мембран: наружную и внутреннюю. Внутренняя мембрана образует внутренние мешочки – тилакоиды . Тилакоиды лежат друг на друге, как стопки монет, образуя граны (50 тилакоидов в гране). Граны объединены друг с другом тилакоидами стромы (ламеллами ). В одном хлоропласте несколько десятков гран.

    Хлорофилл находится в мембранах тилакоидов. Внутренняя мембрана отграничивает внутреннюю среду хлоропласта – строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна). Рибосомы синтезируют белки хлоропластов. ДНК хлоропластов определяют некоторые признаки растений (например, пестрый рисунок листьев бегонии). Хлоропласты размножаются делением.

    Митохондрии – двумембранные органеллы. Наружная мембрана – гладкая, внутренняя имеет выпячивания – кристы, которые обращены в матрикс митохондрии. На мембранах крист располагаются ферменты, участвующие в энергетическом обмене.

    Кроме того, кристы разделяют внутреннюю полость митохондрии на отсеки (камеры) и резко увеличивают площадь поверхности внутренней мембраны. На наружной мембране белков мало, а на внутренней – большое количество: ферментов, обеспечивающих транспорт водорода, протонов, электронов, необходимых для синтеза АТФ. Здесь происходит непоследний этап энергетического обмена.

    В матриксе митохондрии (по составу близкому к цитоплазме) находятся ДНК, все типы РНК, ряд витаминов, различные включения. ДНК обусловливает генетическую автономность митохондрий. Размножаются делением. Во многих клетках митохондрии соединяются и образуют несколько комплексов (а иногда один огромный), которые называются митохондрионами. Они располагаются в клетке рядом с местами интенсивного потребления энергии: в жгутике сперматозоида, около актин-миозиновых нитей мышечных клеток и т.д.

    Эндоплазматическая сеть – это система каналов, цистерн, пузырьков. Стенки каналов образованы элементарной мембраной.

    На шероховатой эндоплазматической сети находятся рибосомы. Она выполняет функцию синтеза интегральных белков, некоторых белков цитоплазмы и экспортных белков.

    Далее происходит накопление белков в каналах эндоплазматической сети и изоляция их от цитоплазмы (гидролитические белки). Белки направляются в другие части клетки или за ее пределы. Шероховатая эндоплазматическая сеть принимает участие в образовании ядерных мембран.

    Гладкая эндоплазматическая сеть состоит из длинных узких трубчатых каналов, не связана с рибосомами. Отвечает за синтез липидов и некоторых углеводов.

    Комплекс Гольджи это система плоских дискообразных цистерн, ограниченных мембраной. Стопка цистерн – диктиосома. По краям отделяются крупные и мелкие пузырьки.

    Зрелые цистерны диктиосомы отделяют пузырьки, которые заполнены секретом. Они используются клеткой или выводятся за пределы. Пузырьки обновляют цитоплазматическую мембрану.

    Цистерны извлекают моносахариды из цитоплазмы и синтезируют олиго и полисахариды.

    У растений: пектиновые вещества, гемицеллюлозу, целлюлозу. У животных: гликопротеины, гликолипиды, амилазу слюны, пептидные гормоны, коллаген, белки молока, желчь в печени и т.д.

    В комплексе Гольджи образуются первичные лизосомы.

    Лизосомы – представляют собой мешочки, окруженные одинарной мембраной (d=0,2 – 0,5 мкм). Лизосомы заполнены гидролитическими ферментами (протеазы, липазы, кислые фосфатазы). Реакция внутри лизосом кислая. Ферменты, находящиеся в лизосомах, синтезируются на шероховатой ЭПС и транспортируются в КГ. Далее от него отделяются пузырьки, которые содержат ферменты, подвергшиеся превращениям. Это первичные лизосомы. Далее первичные лизосомы могут сливаться с эндоцитозным пузырьком, образуя вторичную лизосому (пищеварительную вакуоль). Продукты переваривания поглощаются цитоплазмой клетки. Часть материала остается непереваренной. Вторичная лизосома с непереваренным материалом называется остаточным тельцем. Клетка освобождается от него путем эндоцитоза. Лизосомы играют важную роль в организме.

    Например, они могут участвовать в разрушении чужеродного материала, поступившего путем эндоцитоза. Это явление – гетерофагия . Автофагией называется процесс, с помощью которого уничтожают ненужные ей структуры. В этом случае старые органеллы заменяются новыми. Иногда лизосомы высвобождают свое содержимое, в результате происходит саморазрушение клетки – автолиз.

    Вакуоли. Вакуоль – это мембранный мешок, который наполнен жидкостью, и стенка которого состоит из одинарной мембраны. В животных клетках содержатся небольшие вакуоли, которые являются пищеварительными, фагоцитозными, сократительными. В растительных клетках иная картина. В зрелых клетках паренхимы и колленхимы (и не только) имеется центральная большая вакуоль, которая окружена элементарной мембраной – тонопластом. Внутри содержится клеточный сок, состоящий из минеральных солей, сахаров, органических кислот, кислорода, углекислого газа, пигментов и некоторых отходов жизнедеятельности. Значение вакуолей огромно:

    1. Вакуоли играют важную роль в поступлении воды в клетку путем осмоса. Осмотическое поглощение воды играют важную роль при растяжеии клеток во время их роста, а также в обзем водном режиме растения.
    2. Иногда в вакуолях присутствуют пигменты – антоцианы. Они имеют красную, синюю, пурпурную окраску и некоторые родственные соединения, имеющие желтый и кремовый цвет. Эти пигменты определяют окраску цветков, плодов, почек, листьев. У листьев они обусловливают различные оттенки осенней окраски. Цвет антоцианов может изменяться в зависимости от кислотности среды: кислая – красный, нейтральная – фиолетовый, щелочная – синий. Реакция клеточного сока может меняться от сильнокислой, до слабокислой и слабощелочной, что вызывает соответствующие изменения цвета антоцианов.
    3. В запасающих тканях растений содержатся не одна, а несколько вакуолей, в которых скапливаются запасные питательные вещества. Это жировые или белковые вакуоли. Например, алейроновые зерна – зерна запасного белка в клетках запасающих тканей семян бобовых, гречишных и других злаков.
    4. Клеточный сок содержит фенолы – большой класс органических соединений, которые различаются своей полярностью и реакционной способностью. Например, танины. Также в вакуолярном соке встречаются алколоиды – азотсодержащие природные соединения. Например, морфин, хинин. В вакуолях может накапливаться латекс (млечный сок растений). Иногда у растений в вакуолях содержатся гидролитические ферменты, и тогда при жизни клетки вакуоли действуют как лизосомы.

    Рибосомы – сферические гранулы, диаметром 15 – 35 нм. Состоит из двух нуклеопротеидных субъединиц, из равных количеств белка и РНК. Они имеют разную форму, химическое строение, разную величину. Удерживаются вместе благодаря ионам магния. Обнаружены в клетках всех организмов, а также и у прокариот. Располагаются свободно в цитоплазме, прикрепляются к наружной поверхности мембраны ядра, ЭПС, в митохондриях и хлоропластах. Рибосома защищает иРНК и синтезируемый белок от различных разрушающих ферментов: РНК-азы, протеазы. Начальная часть синтезированного белка находится в каналоподобной структуре.

    Центриоли образуют клеточный центр и представляют собой полые цилиндры длиной не более 0,5 мкм. Располагаются парами перпендикулярно друг другу. Накануне деления в клетке содержится две пары центриолей. Центриоли состоят из девяти пар микротрубочек. Основное свойство – участие в делении клетки – центриоли служат центрами образования веретена деления. В клетке центриоли располагаются вблизи ядра. Во время деления клеток (в профазе) одна центриоль отходит к одному полюсу клетки, вторая – к другому, определяя таким образом положение полюсов. Затем от центриолей отходят нити веретена деления и прикрепляются к центромерам хромосом. В анафазе эти нити притягивают хромосомы к полюсам клетки. После окончания деления центриоли остаются по одной в дочерних клетках, удваиваются и образуют клеточные центры.

    Базальные тельца по структуре идентичны центриолям. Обнаружены в основании ресничек и жгутиков. Образуются, вероятно, путем удвоения центриолей. Являются центрами организации микротрубочек, входящих в состав жгутиков и ресничек.

    Реснички и жгутики – специализированные органоиды, представляющие собой цитоплазматические выросты. Они отвечают за передвижение либо всего организма (протисты, ресничные черви), либо жидкостей или частиц (носовая полость, трахея, яйцевод и т.д.)

    Состоят из 20 микротрубочек: 9 пар периферических и 2 центральных. У основания – базальное тельце. Длина у жгутиков – 100 мкм и более. Если длина 10 -20 мкм, то это реснички. Скольжение микротрубочек вызывает биение жгутиков и ресничек, что обеспечивает перемещение клеток.

    Строение и функции клеточного ядра. Ядро является одним из важнейших компонентов клетки. Оно было открыто в 1831 г. Р. Броуном. Ядро – обязательный компонент всех клеток растений и животных, за исключением предъядерных (бактерий, цианобактерий) и доклеточных (вирусы, фаги) организмов. У большинства клеток форма ядра шаровидная, но также встречаются ядра кольцевидные, палочковидные, веретеновидные, бобовидные, сегментированные и др. У молодых клеток ядро расположено в центре, у зрелых может смещаться в сторону. Размеры ядра от 3 до 25 мкм. Самое крупное ядро у яйцеклетки. Обычно в клетке имеется одно ядро, но иногда бывает и два, например, некоторые нейроны, клетки печени, костного мозга, мышц, соединительной ткани у животных, стенки пыльников у растений.

    Ядро окружено ядерной оболочкой. Она образуется за счет расширения и слияния друг с другом цистерн ЭПС. Ядерная оболочка образована двумя мембранами, между которыми находится перинуклеарное пространство. Ширина его 20 – 50 нм. Оно сохраняет способность сообщаться с ЭПС. Наружная поверхность ядерной мембраны часто бывает покрыта рибосомами.

    При слиянии в некоторых местах наружной и внутренней мембраны образуется пора. Она имеет сложное строение и не имеет открытого просвета. Отверстие закрыто диафрагмой. Через ядерные поры осуществляется избирательный транспорт молекул и частиц. Поры составляют 25% от поверхности ядра. Количество пор у одного ядра – 3000 – 4000. Число пор может меняться в зависимости от активности процессов в клетке. Через поры из ядра в цитоплазму выходят молекулы иРНК, тРНК, субъединицы рибосом, а в ядро – нуклеотиды, белки, ферменты, АТФ, вода, ионы. Внутреннее содержимое ядра (нуклеоплазма) находится в состоянии коллоида. Представляет собой раствор белков, нуклеиновых кислот, углеводов, ферментов, минеральных солей. Нуклеоплазма заполняет пространство между ядерными органеллами и участвует в транспорте веществ, нуклеиновых кислот, субъединиц рибосом.

    Хроматин – это глыбки, гранулы, сетевидные структуры ядра, отличаются по форме от ядрышек. Существует две разновидности хроматина:

    • Гетерохроматин – подвержен окрашиванию (гранулы разм. 10 – 15 нм)
    • Эухроматин – остается светлым после окрашивания (фибриллярные структуры толщиной 5 нм)

    Гетерохроматин располагается вблизи внутренней поверхности ядра и вокруг ядрышек, а эухроматин располагается между гетерохроматином. Основу хроматина составляют нуклеопротеины, т.е. ДНК, упакованная различными белками (гистонами).

    Ядрышки – плотные округлые тельца, погруженные в ядерный сок. В ядрах разных клеток, а также в ядре одной и той же клетки в зависимости от ее функционального состояния количество ядрышек колеблется от 1 до 5-7 и более. Ядрышки синтезируются на определенных участках хромосом, ответственных за синтез рРНК. Ими обладают не все хромосомы. Эти участки называются ядрышковыми организаторами. Они образуют петли.

    Верхушки петель разных хромосом притягиваются друг к другу и встречаются. Так образуется ядрышко. Ядрышки есть только в неделящихся клетках. Во время деления они исчезают, а после деления появляются вновь. Т.е. они не являются постоянными компонентами клетки, а также не являются самостоятельными структурами ядра. Кроме этого в ядрышке формируются рибосомы, которые потом перемещаются в цитоплазму.

    Хромосомы. Представляют собой двойные цепи ДНК, окруженные сложной системой белков. У каждой хромосомы имеется первичная перетяжка, центромера, которая делит хромосому на два плеча. Этот участок является утонченным и неспирализованным. Центромера регулирует движение хромосом при клеточном делении. К ней прикрепляется нить веретена, разводящая хромосомы к полюсам. Расположение центромеры определяет 3 основных вида хромосом:

    • Равноплечие
    • Неравноплечие
    • Палочковидные

    Некоторые хромосомы имеют вторичную перетяжку, не связанную с прикреплением нити веретена деления. Этот участок и есть ядрышковый организатор.

    Кариотип и его видовая специфичность. Количество хромосом во всех клетках организма в течение всей жизни от рождения и до смерти строго постоянно. Совокупность хромосом соматической клетки, характерной для данной систематической группы животных или растений, называется кариотипом.

    Нормальный кариотип человека включает 22 пары аутосом и одну пару половых хромосом (либо ХХ, либо ХУ).

    Количество хромосом в кариотипе не связано с уровнем организации животных и растений. Примитивные формы могут иметь большее число хромосом, чем высокоорганизованные.

    Дата публикования: 2014-11-03; Прочитано: 1471 | Нарушение авторского права страницы

    studopedia.org — Студопедия.Орг — 2014-2018 год.(0.003 с)…

    Из-за блокировщика рекламы некоторые функции на сайте могут работать некорректно! Пожалуйста, отключите блокировщик рекламы на этом сайте.

    Клеточные органоиды: их строение и функции.

    Приглашаем Вас ознакомиться с материалами и вариантами билетов для подготовки к ЕГЭ по биологии.

    Строение растительной клетки : целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

    Наличие пластид - главная особенность растительной клетки.

    Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

    Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

    Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

    Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

    Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

    Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

    Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной.

    Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

    Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

    Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

    Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.

    Строение животной клетки

    Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

    Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

    Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

    Органоиды клетки:

    1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

    2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

    3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

    4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

    5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

    Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

    Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

    Задание:

    Поясните, почему органоиды называют специализированными структурами клетки?

    Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

    Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к репетитору по биологии, он проконсультирует Вас в режиме онлайн.