• Что можно приготовить из кальмаров: быстро и вкусно

    В 1895 немецкий физик Рентген , проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.

    Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.

    Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.

    Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.

    Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.

    Возникновение и свойства рентгеновского излучения

    Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

    Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

    При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см . рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 10 14 –10 15 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

    Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b , при этом интенсивность b -составляющей в 5 раз меньше, чем a . В свою очередь a -составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).

    Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a -частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g -излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.

    Взаимодействие рентгеновских лучей с кристаллами

    При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.

    Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a 0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:

    а (a a 0) = h l ,

    где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.

    При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.

    Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.

    Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга2d sinq = nl , где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.

    Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.

    Рентгеноанализ в науке и технике

    С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

    Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

    В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

    У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

    По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

    С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

    При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

    При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

    Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

    В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.

    После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.


    1. Высокая проникающая способность – способны проникать через определенные среды. Рентгеновсие лучи лучше всего проникают через газообразные среды (легочная ткань), плохо проникают через через вещества с высокой электронной плотностью и большой атомной массой (в человеке – кости).

    2. Флюоресценция – свечение. При этом энергия рентгеновского излучения переходит в энергию видимого света. В настоящее время принцип флюоресценции лежит в основе устройства усиливающих экранов, предназначенных для дополнительного засвечивания рентгеновской пленки. Это позволяет снизить лучевую нагрузку на организм исследуемого пациента.

    3. Фотохимическое – способность индуцировать различные химические реакции.

    4. Ионизирующая способность – под действием рентгеновских лучей происходит ионизация атомов (разложение нейтральных молекул на положительные и отрицательные ионы, составляющие ионную пару.

    5. Биологическое – повреждение клеток. Большей частью оно обусловлено ионизацией биологически значимых структур (ДНК, РНК, молекул белков, аминокислот, воды). Положительные биологические эффекты – противоопухолевое, противовоспалительное.

    1. Устройство лучевой трубки

    Рентгеновские лучи получаются в рентгеновской трубке. Рентгеновская трубка представляет собой стеклянный баллон, внутри которого вакуум. Имеются 2 электрода - катод и анод. Катод - тонкая вольфрамовая спираль. Анод в старых трубках представлял собой тяжелый медный стержень, со скошенной поверхностью, обращенной к катоду. На скошенной поверхности анода впаивалась пластинка из тугоплавкого металла - зеркало анода (анод при работе сильно разогревается). В центре зеркала находится фокус рентгеновской трубки - это место, где образуются рентгеновские лучи. Чем меньше величина фокуса, тем более четким получаются контуры снимаемого объекта. Малым фокусом считается 1x1 мм, и даже меньше.

    В современных рентген-аппаратах электроды производят из тугоплавких металлов. Обычно применяются трубки с вращающимся анодом. Во время работы анод вращается с помощью специального устройства, и электроны, летящие с катода, попадают на оптический фокус. Из-за вращения анода положение оптического фокуса все время меняется, поэтому такие трубки более выносливые, долго не изнашиваются.

    Как получают рентгеновские лучи? Вначале нагревают нить катода. Для этого с помощью понижающего трансформатора напряжение на трубке снижают с 220 до 12-15В. Нить катода нагревается, электроны в ней начинают двигаться быстрее, часть электронов выходит за пределы нити и вокруг нее образуется облако свободных электронов. После этого включается ток высокого напряжения, который получается с помощью повышающего трансформатора . В диагностических рентген-аппаратах применяется ток высокого напряжения от 40 до 125 КВ (1КВ=1000В). Чем выше напряжения на трубке, тем короче длина волны. При включении высокого напряжения получается большая разность потенциалов на полюсах трубки, электроны «отрываются» от катода и с большой скоростью устремляются на анод (трубка - простейший ускоритель заряженных частиц). Благодаря специальным устройствам электроны не разлетаются в стороны, а попадают практически в одну точку анода - фокус (фокусное пятно) и тормозятся в электрическом поле атомов анода. При торможении электронов возникают электромагнитные волны, т.е. рентгеновские лучи. Благодаря специальному устройству (в старых трубках - скошенности анода) рентгеновские лучи направляются на больного в виде расходящегося пучка лучей, «конуса».


    1. Получение рентгеновского изображения
    Получение рентгеновского изображения основано на ослаблении рентгеновского излучения при его прохождении через различные ткани организма. В результате прохождения через образования разной плотности и состава пучок излучения рассеивается и тормозится, в связи с чем, на пленке формируется изображение разной степени интенсивности – так называемое суммационное изображение всех тканей (тень).

    Рентгеновская пленка – слоистая структура, основной слой представляет собой полиэфирный состав толщиной до 175 мкм, покрытый фотоэмульсией (йодид и бромид серебра, желатин).


    1. Проявление пленки – происходит восстановление серебра (где лучи прошли насквозь - почернение участка пленки, где задержались – более светлые участки)

    2. Фиксаж – вымывание бромида серебра из участков, где лучи прошли насквозь и не задержались.
    В современных цифровых аппаратах регистрация выходного излучения может производиться на специальную электронную матрицу. Аппараты обладающие электронной чувствительной матрицей стоят значительно дороже аналоговых устройств. При этом печать плёнок производится только при необходимости, а диагностическое изображение выводится на монитор и, в некоторых системах, сохраняется в базе данных вместе с остальными данными о пациенте.

    1. Устройство современного рентгенологического кабинета
    Для размещения рентгенкабинета в идеале необходимо не менее 4-х помещений:

    1. Сам рентгенкабинет, где находится аппарат и производится исследование больных. Площадь рентген-кабинета должна быть не менее 50 м 2

    2. Пультовая, где расположен пульт управления, с помощью которого рентгенлаборант управляет всей работой аппарата.

    3. Фотолаборатория, где производится зарядка кассет пленкой, проявление и закрепление снимков, их мойка и сушка. Современным способом фотообработки медицинских рентгеновских пленок является использование проявочных автоматов рольного типа. Помимо несомненного удобства в работе проявочные автоматы обеспечивают высокую стабильность процесса фотообработки. Время полного цикла с момента поступления пленки в проявочную машину до получения сухой рентгенограммы ("от сухого до сухого") не превышает нескольких минут.

    4. Кабинет врача, где врач-рентгенолог анализирует и описывает сделанные рентгенограммы.


      1. Методы защиты для медицинского персонала и для пациентов от рентгеновского излучения
    Врач- рентгенолог отвечает за защиту больных, а также персонала, как внутри кабинета, так и людей, находящихся в смежных помещениях. Могут быть коллективные и индивидуальные средства защиты.

    3 основных способа защиты: защита экранированием, расстоянием и временем.

    1 .Защита экранированием:

    На пути рентгеновских лучей помещаются специальные устройства, сделанные из материалов, хорошо поглощающих рентгеновские лучи. Это может быть свинец, бетон, баритобетон и т.д. Стены, пол, потолок в рентгенкабинетах защищены, сделаны из материалов, не пропускающих лучи в соседние помещения. Двери защищены просвинцованным материалом. Смотровые окна между рентгенкабинетом и пультовой делаются из просвинцованного стекла. Рентгеновская трубка помещена в специальный защитный кожух, не пропускающий рентгеновских лучей и лучи направляются на больного через специальное "окно". К окну прикреплен тубус, ограничивающий величину пучка рентгеновских лучей. Кроме того, на выходе лучей из трубки устанавливается диафрагма рентгеновского аппарата. Она представляет собой 2 пары пластин, перпендикулярно расположенных друг к другу. Эти пластины можно сдвигать и раздвигать как шторки. Тем самым можно увеличить или уменьшить поле облучения. Чем больше поле облучения, тем больше вред, поэтому диафрагмирование - важная часть защиты, особенно у детей. К тому же и сам врач облучается меньше. Да и качество снимков будет лучше. Еще один пример зашиты экранированием - те части тела исследуемого, которые в данный момент не подлежат съёмке, должны быть прикрыты листами из просвинцованной резины. Имеются также фартуки, юбочки, перчатки из специального защитного материала.

    2 .Защита временем:

    Больной должен облучаться при рентгенологическом исследовании как можно меньшее время (спешить, но не в ущерб диагностике). В этом смысле снимки дают меньшую лучевую нагрузку, чем просвечивание, т.к. на снимках применяется очень маленькие выдержки (время). Защита временем - это основной способ зашиты и больного и самого врача- рентгенолога. При исследовании больных врач, при прочих равных условиях, старается выбирать метод исследования, на которое уходит меньше времени, но не в ущерб диагностике. В этом смысле от рентгеноскопии больший вред, но, к сожалению, без рентгеноскопии часто невозможно обойтись. Taк при исследовании пищевода, желудка, кишечника применяются оба метода. При выборе метода исследования руководствуемся правилом, что польза от исследования должна быть больше, чем вред. Иногда из-за боязни сделать лишний снимок возникают ошибки в диагностике, неправильно назначается лечение, что иногда стоит жизни больного. О вреде излучения надо помнить, но не надо его бояться, это хуже для больного.

    3 .Защита расстоянием:

    Согласно квадратичному закону света освещенность той или иной поверхности обратно пропорциональна квадрату расстояния от источника света до освещаемой поверхности. Применительно к рентгенологическому исследованию это значит, что доза облучения обратно пропорциональна квадрату расстояния от фокуса рентгеновской трубки до больного (фокусное расстояние). При увеличении фокусного расстояния в 2 раза доза облучения уменьшается в 4 раза, при увеличении фокусного расстояния в 3 раза доза облучения уменьшается в 9 раз.

    Не разрешается при рентгеноскопии фокусное расстояние меньше 35 см. Расстояние от стен до рентгеновского аппарата должно быть не менее 2 м, иначе образуются вторичные лучи, которые возникают при попадании первичного пучка лучей на окружающие объекты (стены и т.д.). По этой же причине в рентген-кабинетах не допускается лишняя мебель. Иногда при исследовании тяжелых больных, персонал хирургического и терапевтического отделений помогает больному встать за экран для просвечивания и стоят во время исследования рядом с больным, поддерживают его. Как исключение это допустимо. Но врач-рентгенолог должен следить, чтобы помогающие больному сестры и санитарки надевали защитный фартук и перчатки и, по возможности, не стояли близко к больному (защита расстоянием). Если в рентген-кабинет пришли несколько больных, они вызываются в процедурную по 1 человеку, т.е. в данный момент исследования должен быть только 1 человек.


      1. Физические основы рентгенографии и флюорографии. Их недостатки и достоинства. Преимущества цифровой перед пленочной.
    Рентгеногра́фия (англ. projection radiography, plain film radiography, roentgenography,) - исследование внутренней структуры объектов, которые проецируются при помощи рентгеновских лучей на специальную плёнку или бумагу. Наиболее часто термин относится к медицинскому неинвазивному исследованию, основанному на получении суммационного проекционного статического (неподвижного) изображения анатомических структур организма посредством прохождения через них рентгеновских лучей и регистрации степени ослабления рентгеновского излучения.
    Принципы выполнения рентгенографии

    При диагностической рентгенографии целесообразно проведение снимков не менее, чем в двух проекциях. Это связано с тем что рентгенограмма представляет собой плоское изображение трёхмерного объекта. И как следствие локализацию обнаруженного патологического очага можно установить только с помощью 2 проекций.


    Методика получения изображения

    Качество полученного рентгеновского снимка определяется 3 основными параметрами. Напряжением, подаваемым на рентгеновскую трубку, силой тока и временем работы трубки. В зависимости от исследуемых анатомических образований, и массо-габаритных данных пациента эти параметры могут существенно изменяться. Существуют средние значения для разных органов и тканей, но следует учитывать что фактические значения будут отличаться в зависимости от аппарата, где проводится исследование и пациента, которому проводится рентгенография. Для каждого аппарата составляется индивидуальная таблица значений. Значения эти не абсолютные и корректируются по мере выполнения исследования. Качество выполняемых снимков во многом зависят от способности рентгенолаборанта адекватно адаптировать таблицу средних значений к конкретному пациенту.


    Запись изображения

    Наиболее распространенным способом записи рентгеновского изображения является фиксация его на рентгенчувствительной пленке с последующей его проявкой. В настоящее время также существуют системы, обеспечивающие регистрацию данных в цифровом виде. В связи с высокой стоимостью и сложностью изготовления данный вид оборудования по распространенности несколько уступает аналоговому.

    Рентгеновская пленка помещается в специальные устройства - кассеты (говорят - кассету заряжают). Кассета предохраняет пленку от действия видимого света; последний, как и рентгеновские лучи, обладает способностью восстанавливать металлическое серебро из AgBr. Кассеты делаются из материала, не пропускающего свет, но пропускающего рентгеновские лучи. Внутри кассет имеются усиливающие экраны, пленка укладывается между ними; при выполнении снимка на пленку попадают не только сами рентгеновские лучи, но и свет от экранов (экраны покрыты флюоресцирующей солью, поэтому они светятся и усиливают действие рентгеновских лучей). Это позволяет уменьшить лучевую нагрузку на больного в 10-ки раз.

    При выполнении снимка рентгеновские лучи направляют на центр снимаемого объекта (центрация). После съемки в фотолаборатории пленка проявляется в специальных химических реактивах и закрепляется (фиксируется). Дело в том, что на тех частях пленки, на которую при съемке рентгеновские лучи не попали или их попало мало, серебро не восстановилось, и, если пленку не поместить в раствор фиксажа (закрепителя), то при рассмотрении пленки происходит восстановление серебра под влиянием видимого света. Вся пленка почернеет и никакого изображения не будет видно. При закреплении (фиксировании) не восстановившийся AgBr с пленки уходит в раствор фиксажа, поэтому в фиксаже много серебра, и эти растворы не выливаются, а сдаются в рентгеновские центры.

    Современным способом фотообработки медицинских рентгеновских пленок является использование проявочных автоматов рольного типа. Помимо несомненного удобства в работе проявочные автоматы обеспечивают высокую стабильность процесса фотообработки. Время полного цикла с момента поступления пленки в проявочную машину до получения сухой рентгенограммы ("от сухого до сухого") не превышает нескольких минут.
    Ренгеноргаммы представляют собой изображение, выполненное в черно-белых тонах – негатив. Черные – участки имеющие низкую плотность (легкие, газовый пузырь желудка. Белые - имеющие высокую плотность (кости).
    Флюорогра́фия - Сущность ФОГ в том, что при ней изображение грудной клетки вначале получают на флюоресцирующем экране, и затем делается снимок не самого больного, а его изображения на экране.

    Флюорография даёт уменьшенное изображение объекта. Выделяют мелкокадровую (например, 24×24 мм или 35×35 мм) и крупнокадровую (в частности, 70×70 мм или 100×100 мм) методики. Последняя по диагностическим возможностям приближается к рентгенографии. ФОГ применяется для профилактического обследования населения (выявляются скрыто протекающие заболевания, такие как рак и туберкулез).

    Разработаны как стационарные, так и мобильные флюорографические аппараты.

    В настоящее время плёночная флюорография постепенно заменяется цифровой. Цифровые методы позволяют упростить работу с изображением (изображение может быть выведено на экран монитора, распечатано, передано по сети, сохранено в медицинской базе данных и т. п.), уменьшить лучевую нагрузку на пациента и уменьшить расходы на дополнительные материалы (плёнку, проявитель для плёнки).


    Существует две распространённые методики цифровой флюорографии. Первая методика, как и обычная флюорография, использует фотографирование изображения на флюоресцентном экране, только вместо рентген-плёнки используется ПЗС-матрица. Вторая методика использует послойное поперечное сканирование грудной клетки веерообразным пучком рентгеновского излучения с детектированием прошедшего излучения линейным детектором (аналогично обычному сканеру для бумажных документов, где линейный детектор перемещается вдоль листа бумаги). Второй способ позволяет использовать гораздо меньшие дозы излучения. Некоторый недостаток второго способа - большее время получения изображения.
    Сравнительная характеристика дозовой нагрузки при различных исследованиях .

    Обычная плёночная флюорограмма грудной клетки обеспечивает пациенту среднюю индивидуальную дозу облучения в 0,5 миллизиверта (мЗв) за одну процедуру (цифровая флюорограмма - 0,05 мЗв), в то время как плёночная рентгенограмма - 0,3 мЗв за процедуру (цифровая рентгенограмма - 0,03 мЗв), а компьютерная томография органов грудной клетки - 11 мЗв за процедуру. Магнитно-резонансная томография не несёт лучевой нагрузки

    Преимущества рентгенографии


        1. Широкая доступность метода и лёгкость в проведении исследований.

        2. Для большинства исследований не требуется специальной подготовки пациента.

        3. Относительно низкая стоимость исследования.

        4. Снимки могут быть использованы для консультации у другого специалиста или в другом учреждении (в отличие от УЗИ-снимков, где необходимо проведение повторного исследования, так как полученные изображения являются оператор-зависимыми).
    Недостатки рентгенографии

    1. Статичность изображения - сложность оценки функции органа.

    2. Наличие ионизирующего излучения, способного оказать вредное воздействие на пациента.

    3. Информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации , как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами.

    4. Без применения контрастирующих веществ рентгенография недостаточно информативна для анализа изменений в мягких тканях, мало отличающихся по плотности (например, при изучении органов брюшной полости).

      1. Физические основы рентгеноскопии. Недостатки и достоинства метод
    РЕНТГЕНОСКОПИЯ (просвечивание) - метод рентгенологического исследования, при котором с помощью рентгеновских лучей получают позитивное изображение исследуемого объекта на флюоресцирующем экране. При рентгеноскопи плотные участки объекта (кости, инородные тела) выглядят тёмными, менее плотные (мягкие ткани) - более светлыми.

    В современных условиях применение флюоресцентного экрана не обосновано в связи с его малой светимостью, что вынуждает проводить исследования в хорошо затемненном помещении и после длительной адаптации исследователя к темноте (10-15 минут) для различения малоинтенсивного изображения.

    Теперь флюоресцирующие экраны используются в конструкции УРИ (усилитель рентгеновского изображения), увеличивающего яркость (свечение) первичного изображения примерно в 5 000 раз. С помощью электронно-оптический преобразователя изображение появляется на экране монитора, что существенно улучшает качество диагностики, не требует затемнения рентгеновского кабинета.

    Достоинства рентгеноскопии
    Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость. Метод также позволяет достаточно быстро оценить локализацию некоторых изменений, за счет вращения объекта исследования во время просвечивания (многопроекционное исследование).

    Рентгеноскопия позволяет контролировать проведение некоторых инструментальных процедур - постановка катетеров, ангиопластика (см. ангиография), фистулография.

    Полученные изображения могут быть помещены на обычный CD-диск либо в сетевое хранилище.

    С приходом цифровых технологий исчезли 3 основных недостатка присущие традиционной рентгеноскопии:

    Относительно высокая доза облучения по сравнению с рентгенографией - современные малодозовые аппараты оставили этот недостаток в прошлом. Использование режимов импульсной скопии дополнительно снижает дозовую нагрузку до 90%.

    Низкое пространственное разрешение - на современных цифровых аппаратах разрешение в режиме скопии лишь немного уступает разрешению в рентгенографическом режиме. В данном случае, определяющее значение имеет возможность наблюдать функциональное состояние отдельных органов (сердце, лёгкие, желудок, кишечник) "в динамике".

    Невозможность документирования исследований - цифровые технологии обработки изображений дают возможность сохранения материалов исследования, как покадрово, так и в виде видеоряда.

    Рентгеноскопию производят главным образом при рентгенодиагностике заболеваний внутренних органов, расположенных в брюшной и грудной полостях, по плану, который врач-рентгенолог составляет перед началом исследования. Иногда, так называемую, обзорную рентгеноскопию применяют при распознавании травматических повреждений костей, для уточнения области подлежащей рентгенографии.

    Контрастное рентгеноскопическое исследование

    Искусственное контрастирование чрезвычайно расширяет возможности рентгеноскопического исследования органов и систем, где плотности тканей приблизительно одинаковы (например, брюшная полость, органы которой пропускают рентгеновское излучение примерно в одинаковой степени и поэтому малоконтрастны). Это достигается путем введения в просвет желудка или кишечника водной взвеси сульфата бария, который не растворяется в пищеварительных соках, не всасывается ни желудком, ни кишечником и выводится естественным путем в совершенно неизмененном виде. Основным достоинством бариевой взвеси является то, что она, проходя по пищеводу, желудку и кишечнику, обмазывает их внутренние стенки и дает на экране или пленке полное представление о характере возвышений, углублений и других особенностей их слизистой оболочки. Исследование внутреннего рельефа пищевода, желудка и кишечника способствует распознаванию ряда заболеваний этих органов. При более тугом заполнении можно определить форму, размеры, положение и функцию исследуемого органа.


      1. Маммография – основы метода, показания. Преимущества цифровой маммографии перед пленочной.

    Маммогра́фия - раздел медицинской диагностики, занимающийся неинвазивным исследованием молочной железы, преимущественно женской, который проводится с целью:
    1.профилактического обследования (скрининга) здоровых женщин для выявления ранних, непальпируемых форм рака молочной железы;

    2.дифференциальной диагностики между раком и доброкачественными дисгормональными гиперплазиями (ФАМ) молочной железы;

    3.оценки роста первичной опухоли (одиночный узел или мультицентричные раковые очаги);

    4.динамического диспансерного наблюдения за состоянием молочных желез после оперативных вмешательств.

    В медицинскую практику внедрены такие методы лучевой диагностики рака молочной железы: маммография, ультразвуковые исследования, компьютерная томография, магнитно-резонансная томография, цветная и энергетическая допплерография, стереотаксическая биопсия под контролем маммографии, термография.


    Рентгеновская маммография
    В настоящее время в мире в подавляющем большинстве случаев для диагностики рака женской молочной железы (РМЖ) используют рентгеновскую проекционную маммографию, пленочную (аналоговую) или цифровую.

    Процедура занимает не более 10 минут. Для снимка грудь должна быть зафиксирована между двумя планками и слегка сжата. Снимок делается в двух проекциях, чтобы можно было точно определить местонахождение новообразования, если оно будет найдено. Поскольку симметрия является одним из факторов диагностики, всегда следует проводить исследование обеих молочных желез.

    МРТ маммография

    Жалобы на западение или выбухание какого-либо участка железы

    Выделения из соска, изменение его формы

    Болезненность молочной железы, ее отечность, изменение размеров


    Как профилактический метод обследования маммография назначается всем женщинам в возрасте 40 лет и старше, или женщинам, находящимся в группе риска.

    Доброкачественные опухоли молочной железы (в частности, фиброаденома)

    Воспалительные процессы (маститы)

    Мастопатия

    Опухоли половых органов

    Заболевания желез внутренней секреции (щитовидной, поджелудочной)

    Бесплодие

    Ожирение

    Операции на молочной железе в анамнезе

    Преимущества цифровой маммографии перед пленочной:

    Снижению дозовых нагрузок при проведении рентгеновских исследований;

    Повышение эффективности исследований, позволяющим выявлять ранее недоступные патологические процессы (возможности цифровой компьютерной обработки изображений);

    Возможности использования телекоммуникационных сетей для передачи изображений с целью дистанционной консультации;

    Достижение экономического эффекта при проведении массовых исследований.

    Рентгеновское излучение, с точки зрения физики, это электромагнитное излучение, длина волн которого варьируется в диапазоне от 0,001 до 50 нанометров. Было открыто в 1895 немецким физиком В.К.Рентгеном.

    По природе эти лучи являются родственными солнечному ультрафиолету. В спектре самыми длинными являются радиоволны. За ними идет инфракрасный свет, который наши глаза не воспринимают, но мы ощущаем его как тепло. Далее идут лучи от красного до фиолетового. Затем - ультрафиолет (А, В и С). А сразу за ним рентгеновские лучи и гамма-излучение.

    Рентгеновское может быть получено двумя способами: при торможении в веществе проходящих сквозь него заряженных частиц и при переходе электронов с высших слоев на внутренние при высвобождении энергии.

    В отличие от видимого света эти лучи имеют очень большую длину, поэтому способны проникать через непрозрачные материалы, не отражаясь, не преломляясь и не накапливаясь в них.

    Тормозное излучение получить проще. Заряженные частицы при торможении испускают электромагнитное излучение. Чем больше ускорение этих частиц и, следовательно, резче торможение, тем больше образуется рентгеновского излучения, а длина его волн становится меньше. В большинстве случаев на практике прибегают к выработке лучей в процессе торможения электронов в твердых веществах. Это позволяет управлять источником этого излучения, избегая опасности радиационного облучения, потому что при отключении источника рентгеновское излучение полностью исчезает.

    Самый распространенный источник такого излучения - Испускаемое ей излучение неоднородно. В нем присутствует и мягкое (длинноволновое), и жесткое (коротковолновое) излучения. Мягкое характеризуется тем, что полностью поглощается человеческим телом, поэтому такое рентгеновское излучение вред приносит в два раза больше, чем жесткое. При чрезмерном электромагнитном облучении в тканях организма человека ионизация может привести к повреждению клеток и ДНК.

    Трубка - это с двумя электродами - отрицательным катодом и положительным анодом. При разогревании катода из него испаряются электроны, затем они ускоряются в электрическом поле. Сталкиваясь с твердым веществом анодов, они начинают торможение, которое сопровождается испусканием электромагнитного излучения.

    Рентгеновское излучение, свойства которого широко используются в медицине, базируется на получении теневого изображения исследуемого объекта на чувствительном экране. Если диагностируемый орган просвечивать пучком параллельных друг другу лучей, то проекция теней от этого органа будет передаваться без искажений (пропорционально). На практике источник излучения более похож на точечный, поэтому его располагают на расстоянии от человека и от экрана.

    Чтобы получить человек помещается между рентгеновской трубкой и экраном или пленкой, выступающими в роли приемников излучения. В результате облучения на снимке костная и другие плотные ткани проявляются в виде явных теней, выглядят более контрастно на фоне менее выразительных участков, которые передают ткани с меньшим поглощением. На рентгеновских снимках человек становится «полупрозрачным».

    Распространяясь, рентгеновское излучение может рассеиваться и поглощаться. До поглощения лучи могут проходить сотни метров в воздухе. В плотном веществе они поглощаются гораздо быстрее. Биологические ткани человека неоднородны, поэтому поглощение ими лучей зависит от плотности ткани органов. поглощает лучи быстрее, чем мягкие ткани, потому что содержит вещества, имеющие большие атомные номера. Фотоны (отдельные частицы лучей) поглощаются разными тканями организма человека по-разному, что и позволяет получать контрастное изображение с помощью рентгеновских лучей.

    Министерство образования и науки РФ

    Федеральное агентство по образованию

    ГОУ ВПО ЮУрГУ

    Кафедра физической химии

    по курсу КСЕ: “Рентгеновское излучение”

    Выполнил:

    Наумова Дарья Геннадиевна

    Проверил:

    Доцент, К. Т.Н.

    Танклевская Н.М.

    Челябинск 2010 г.

    Введение

    Глава I. Открытие рентгеновского излучения

    Получение

    Взаимодействие с веществом

    Биологическое воздействие

    Регистрация

    Применение

    Как делают рентгеновский снимок

    Естественное рентгеновское излучение

    Глава II. Рентгентография

    Применение

    Метод получения изображения

    Преимущества рентгенографии

    Недостатки рентгенографии

    Рентгеноскопия

    Принцип получения

    Преимущества рентгеноскопии

    Недостатки рентгеноскопии

    Цифровые технологии в рентгеноскопии

    Многострочный сканирующий метод

    Заключение

    Список использованной литературы

    Введение

    Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

    Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

    Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

    Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

    Глава I. Открытие рентгеновского излучения

    Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

    По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

    Положение на шкале электромагнитных волн

    Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

    (Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

    )

    Получение

    Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

    ,

    где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

    Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

    Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

    Взаимодействие с веществом

    Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

    Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

    Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

    Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

    РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

    Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучениями и представляет собой электромагнитное излучение с длиной волны от 10 -14 до 10 -7 м. В медицине используется рентгеновское излучение с длиной волны от 5 х 10 -12 до 2,5 х 10 -10 м, то есть 0,05 – 2,5 ангсмтрема, а собственно для рентгенодиагностики – 0,1 ангстрема. Излучение представляет собой поток квантов (фотонов), распространяющихся прямолинейно со скоростью света (300 000 км/с). Эти кванты не имеют электрического заряда. Масса кванта со­ставляет ничтожную часть атомной единицы массы.

    Энергию квантов измеряют в Джоулях (Дж), но на практике часто пользуются внесистемной единицей "электрон-вольт" (эВ) . Один электрон-вольт - это энергия, которую приобретает один электрон, пройдя в электриче­ском поле разность потенциалов в 1 вольт. 1 эВ = 1,6 10~ 19 Дж. Производными являются килоэлектрон-вольт (кэВ), равный тысяче эВ, и мегаэлектрон-вольт (МэВ), равный миллиону эВ.

    Рентгеновские лучи получают с помощью рентгеновских трубок, линейных ускорителей и бетатронов. В рентгеновской трубке разность потенциалов между катодом и анодом-мишенью (десятки киловольт) ускоряет электроны, бомбардирующие анод. Рентгеновское излучение возникает при торможении быстрых электронов в электрическом поле атомов вещества анода (тормозное излучение) или при перестрой­ке внутренних оболочек атомов (характеристическое излучение ) . Характеристическое рентгеновское излучение имеет дискретный характер и возникает при переходе электронов атомов вещества анода с одного энергетического уровня на другой под воздействием внеш­них электронов или квантов излучения. Тормозное рентгеновское излучение имеет непрерывный спектр, зависящий от анодного напря­жения на рентгеновской трубке. При торможении в веществе анода электроны большую часть своей энергии расходуют на нагрев анода (99%) и лишь малая доля (1%) превра­щается в энергию рентгеновского излучения. В рентгенодиагностике чаще всего используется тормозное излучение.

    Основные свойства рентгеновских лучей характерны для всех электромагнитных излучений, однако существуют некоторые особенности. Рентгеновские лучи обладают следующими свойствами:

    - невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

    - прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы;



    - проникающая способность - проникают без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение;

    - способность к поглощению - обладают способностью поглощаться тканями организма, на этом основана вся рентгенодиагностика. Способность к поглощению зависит от удельного веса тканей (чем больше, тем больше поглощение); от толщины объекта; от жесткости излучения;

    - фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

    - люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

    - ионизационное действие - обладают способностью вызывать распад нейтральных атомов на положительно и отрицательно заряженные частицы, на этом основана дозиметрия. Эффект ионизации любой среды заключается в образовании в ней положительных и отрицательных ионов, а также свободных электронов из нейтральных атомов и молекул вещества. Ионизация воздуха в рентгеновском кабинете при работе рентгеновской трубки приводит к увеличению электрической проводимости воздуха, усилению статических электрических зарядов на предметах кабинета. С целью устранения такого нежелательного влияния их в рентгеновских кабинетах предусмотрена принудительная приточно-вытяжная вентиляция;

    - биологическое действие - оказывают воздействие на биологические объекты, в большинстве случаев это воздействие является вредным;

    - закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.